The Material Engineering Diffractometer BEER at ESS

Instrument overview and status reminder

Přemysl Beran¹, Jan Šaroun¹, Petr Lukáš¹, Jochen Fenske², Mustapha Rouijaa², Gregor Nowak², Martin Müller², Dirk Jan Siemers², Rüdiger Kiehn², Markus Strobl³, Robin Woracek³

> ¹Nuclear Physics Institute ASCR, Řež, Czech Republic ²Helmholtz-Zentrum Geesthacht, Geesthacht, Germany ³European Spallation Source, Sweden

June 14, 2018, Copenhagen, Denmark Software Workshop on Engineering Diffraction

Outlook

BEER@ESS

P. Beran *et al.*

- Introduction
- Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

Introduction and reminder of science case BEER instrument teams Engineering Materials Science case Instrument modalities

2 Current instrument status & time schedule

3 Instrument environment and layout

Operational environment Instrument component description Day-one performance Sample environment

4 Summary

Work-package definition

BEER instrument teams

Presentation of the teams and team members

BEER@ESS

P. Beran *et al.*

Introduction Instrument teams Eng. materials Science case

Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

Nuclear Physics Institute CAS

Czech Republic

Leading Scientist

Přemysl Beran

Leading Engineer

Radim Šejda (NUVIA)

Core team members

- Jan Šaroun
- Petr Lukáš
- Petr Šittner

Helmholtz-Zentrum Geesthacht Germany

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Leading Scientist

Jochen Fenske

Leading Engineer

Dirk Jan Siemers

Core team members

- Martin Müller
- Rüdiger Kiehn
- Gregor Nowak

Engineering Materials Areas of engineering research

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Beamline for European Materials Engineering Research

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

more COMPLEX materials

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- more COMPLEX materials
- MULTI-PHASE and composite materials

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

What is needed

high neutron flux

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

- high neutron flux
- variable resolution and wavelength

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

- high neutron flux
- variable resolution and wavelength
- high detector coverage

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)
- SAMPLE ENVIRONMENT

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Scientific drivers & goals

- more COMPLEX materials
- MULTI-PHASE and composite materials
- IN-SITU testing in REAL processing conditions
- design of NEW materials
- TAILORING of functional properties

- high neutron flux
- variable resolution and wavelength
- high detector coverage
- combination of method (diffraction, SANS, imaging, ...)
- SAMPLE ENVIRONMENT

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

In-situ simulation of thermo-mechanical processes

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

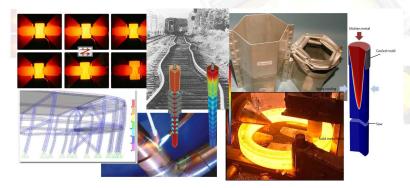
In-situ simulation of thermo-mechanical processes

- Study the processes to tailor the material properties for application needs
- To optimise thermo-mechanical treatment to reduce production cost
- Understand processes happening during material application

What the BEER instrument should be able to do?

BEER@ESS

- P. Beran *et al.*
- Introduction Instrument teams Eng. materials Science case Modalities


Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

In-situ simulation of thermo-mechanical processes

- Study the processes to tailor the material properties for application needs
- To optimise thermo-mechanical treatment to reduce production cost
- Understand processes happening during material application

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

Multi-phase and/or composite materials

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

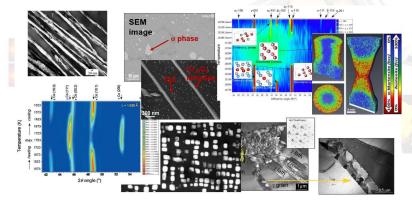
Summary WP definition

Multi-phase and/or composite materials

- Resolve phases evolution together with microstructure changes
- Multi-scale characterisation

What the BEER instrument should be able to do?

BEER@ESS


- P. Beran et al.
- Introduction Instrument teams Eng. materials Science case Modalities

Current status

- Instrument Hall layout Description Performance Sample environm
- Summary WP definition

Multi-phase and/or composite materials

- Resolve phases evolution together with microstructure changes
- Multi-scale characterisation

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

In-situ texture or grain growth evolution

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

In-situ texture or grain growth evolution Fast strain scanning

What the BEER instrument should be able to do?

BEER@ESS

P. Beran *et al.*

- Introduction
- Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

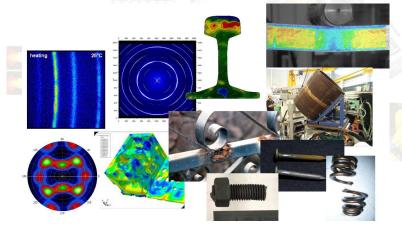
Summary WP definition

- In-situ texture or grain growth evolution
- Fast strain scanning
- Long-term experiments

What the BEER instrument should be able to do?

BEER@ESS

P. Beran et al.


- Introduction Instrument teams Eng. materials Science case
- Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition In-situ texture or grain growth evolution

- Fast strain scanning
- Long-term experiments

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Instrument status

Current status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Eng. material Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%

Instrument status

Current status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction Instrument teams Eng. materials Science case

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%
- running the Phase 2 Detail engineering design

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%
- running the Phase 2 Detail engineering design
- expected final TG3 at the beginning of 2019

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environn

Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%
- running the Phase 2 Detail engineering design
- expected final TG3 at the beginning of 2019
- start of installation end 2019 / beginning 2020

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%
- running the Phase 2 Detail engineering design
- expected final TG3 at the beginning of 2019
- start of installation end 2019 / beginning 2020
- beam on target Sep 2022

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environn

Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%
- running the Phase 2 Detail engineering design
- expected final TG3 at the beginning of 2019
- start of installation end 2019 / beginning 2020
- beam on target Sep 2022
- start of hot commissioning 2023

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

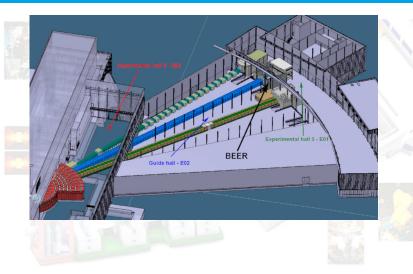
Summary WP definition

- defined and fixed scope
- frozen reduced budget of 14.98 M€
- work package schema NPI:HZG = 50:50%
- running the Phase 2 Detail engineering design
- expected final TG3 at the beginning of 2019
- start of installation end 2019 / beginning 2020
- beam on target Sep 2022
- start of hot commissioning 2023
- user program starts end 2023

Operational environment BEER position on the ESS site

BEER@ESS

P. Beran *et al.*


Introduction

Eng. materials Science case Modalities

Current status

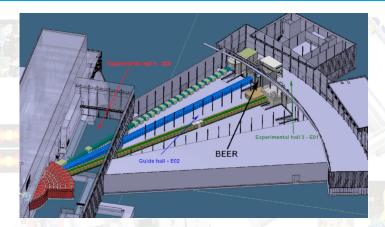
Instrument Hall layout Description Performance Sample environm

Summary WP definition

Operational environment BEER position on the ESS site

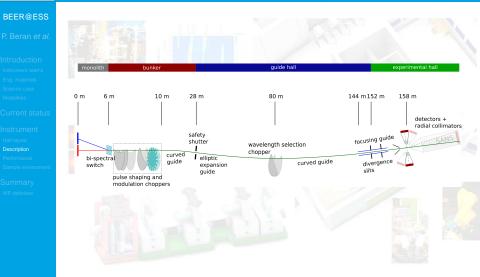
BEER@ESS

P. Beran et al.

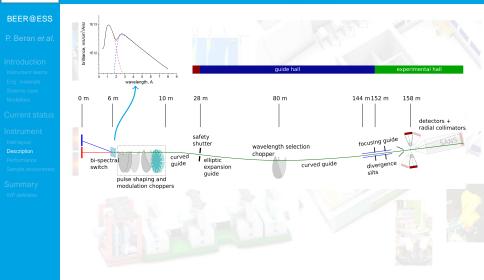

Introduction

Science case Modalities

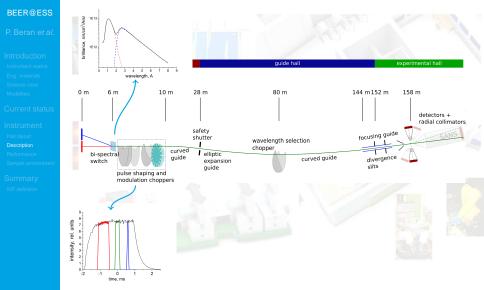
Current status

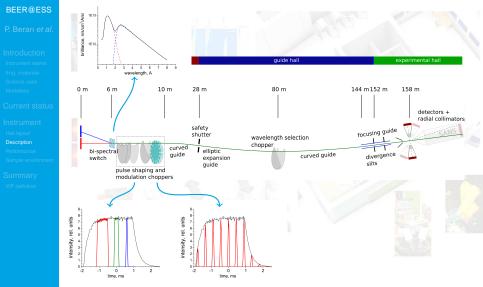

Instrument Hall layout Description Performance Sample environm

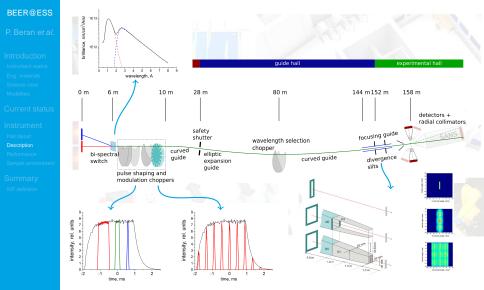
Summary WP definition

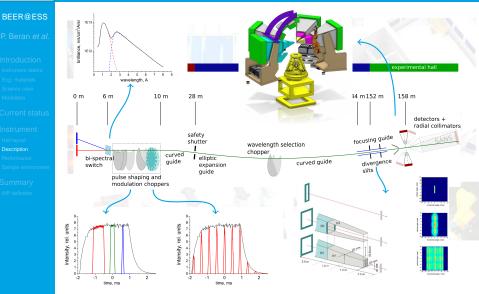


- 158 m long isntrument (distance from source to sample)
- neighbour instruments NMX (crystallography) and C-Spec (spectrometer)
- preparatory lab below control hutch
- SLIM lab for storage and long term experiments (20 m from cave)









Instrument at Day-one Scope reduction and completion status of the BEER instrument

BEER@ESS

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

Reduced Day-one scope

• only two 1 m² detectors at $\pm 90^{\circ}$ (resolution 2×5 mm)

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

- only two 1 m² detectors at $\pm 90^{\circ}$ (resolution 2×5 mm)
- no SANS and imaging option

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
 - sample table with rotation only

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system $(10 \rightarrow 5)$

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- advanced deformation rig and dilatometer in pool

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Reduced Day-one scope

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- advanced deformation rig and dilatometer in pool

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environme

Summary WP definition

Reduced Day-one scope

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- advanced deformation rig and dilatometer in pool

For completion to Full-scope is needed

• update of chopper system (+4 choppers)

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Reduced Day-one scope

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- advanced deformation rig and dilatometer in pool

- update of chopper system (+4 choppers)
- enhance sample positioning

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Reduced Day-one scope

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- advanced deformation rig and dilatometer in pool

- update of chopper system (+4 choppers)
- enhance sample positioning
- increase of detector coverage (off & in plane)

Scope reduction and completion status of the BEER instrument

BEER@ESS

P. Beran *et al.*

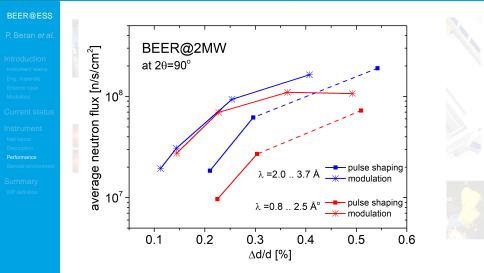
Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition


Reduced Day-one scope

- only two 1 m² detectors at \pm 90° (resolution 2×5 mm)
- no SANS and imaging option
- sample table with rotation only
- hexapod (2 t) and 6-axis robot for sample positioning
- reduced chopper system (10 \rightarrow 5)
- no multi-channel focusing optics
- no sample environment in the instrument budget!
- advanced deformation rig and dilatometer in pool

- update of chopper system (+4 choppers)
- enhance sample positioning
- increase of detector coverage (off & in plane)
- ..., SE, SANS option, ...

Day-one performance Performance of BEER at 2 MW

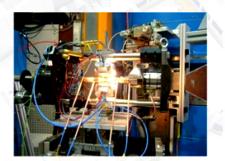
Dashed line shows the extension of the resolution range by adding the 3rd chopper as suggested for the staging plan.

BEER@ESS

P. Beran et al.

Introduction

Instrument team Eng. materials Science case Modalities


Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

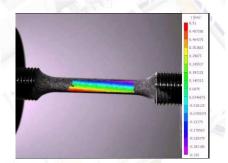
- advanced deformation rigs
 - uni-axial deformation
 - max. load 60 kN
 - with furnace (1200°C)
 - vacuum chamber

BEER@ESS

P. Beran et al

Introduction

Instrument team Eng. materials Science case Modalities


Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- advanced deformation rigs
- digital image correlation

BEER@ESS

P. Beran *et al.*

ntroduction

Instrument team: Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- advanced deformation rigs
- digital image correlation
 - dilatometer
 - DSC unit
 - max. load 25 kN
 - heating rate (4000 K/s)
 - cooling rate (2500 K/s)

BEER@ESS

P. Beran *et al.*

Introduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environn

Summary WP definition

BEER dedicated SE

- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines

• stir-welding • laser-welding

BEER@ESS

P. Beran *et al.*

ntroduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
- Gleeble ®

BEER@ESS

P. Beran *et al*.

ntroduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environr

Summary WP definition

- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
- Gleeble ®
 - advanced positioning
 - payload 2 t
 - x, y: ±110 mm
 - z: ±150 mm
 - payload 14 kg
 - repeatability: ±0.06 mm

Sample environment

Examples of SE foreseen for the BEER instrument

BEER@ESS

P. Beran *et al*.

ntroduction

Instrument team: Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

BEER dedicated SE

- advanced deformation rigs
- digital image correlation
- dilatometer
- different welding machines
- Gleeble [®]
- advanced positioning

Pool SE

- furnaces
- cryostat
- cryo-furnaces

Work-packages

Definition and split of work-packages

BEER@ESS

P. Beran *et al.*

ntroduction

Instrument team Eng. materials Science case Modalities

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

NPI

- after-bunker optics
- safety shutter
- focusing optics
- guide shielding
- elevated floor
- cave & hutch
- transport platform

HZG

- in-monolith optics
- in-bunker guides
- choppers
- detectors
- monitors
- sample table
- hexapod, robot

Acknowledgment

BEER@ESS

P. Beran et al.

Introduction Instrument teams Eng. materials Science case

Current status

Instrument Hall layout Description Performance Sample environm

Summary WP definition

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

THANK YOU FOR YOUR ATTENTION

