Line Profile Analysis for Engineering Materials Science

Tamás Ungár

^aSchool of Materials, The University of Manchester, Manchester, U.K. ^bDepartment of Materials Physics, Eötvös University Budapest, Budapest, Hungary

Software Workshop on Engineering Diffraction for ESS Materials Engineering Beamline, 14-15 June, Copenhagen, Denmark Convolutional Multiple Whole Profile (CMWP) software package

[©]Gábor Ribárik & Tamás Ungár

Macherauch, E. (~1965) schematic classification of **internal stresses**

Macherauch, E. (~1965) schematic classification of internal stresses

σ_I: *macro-stress* averaged over many grains

σ_{II}: *intergranular-stresses* averaged over individual grains

σ_{III}: *micro-strains* (or *stresses*) produced (mainly) by *dislocations*

Diffraction experiments

σ_{I} : *macro-stress*

all peaks shift in the same direction

Diffraction experiments

σ_{II} : *intergranular*-strains/stresses

peak-positions corresponding to *individual grains*: lattice-strain

Diffraction experiments

σ_{III}: *micro-strains* (or *stresses*)

are produced by *dislocations*:

peaks broaden

Instrumental effects can be substantial, but can be measured

X-ray diffraction:

Instrumental effects can be substantial, but can be measured

neutron diffraction:

SNS-VULCAN

Ungár T., Stoica A.D., Tichy G., Wang X.-L. Acta Mater. 66 (2014) 251-261

Instrumental effects can be substantial, but can be measured **neutron diffraction:** TAKUMI J-PARC

Lath-martensite **Tensile deformed** $\epsilon = 4.7 \%$ 1000 (310) Instrumental Counts $\Delta K/K \cong 0.3 \%$ 0 peak asymmetry is genuine -0.50 -0.25 0.00 0.25 0.50 K [1/nm]

Ungár T., S. Harjo, T. Kawasaki, Y. Tomota, G. Ribárik, Z. Shi, Met. Mater. Transact. A48 (2017) 159-167.

Two different approaches to line-profile-analysis:

Top-down: diffraction patterns are **fitted** by **analytical** profile-functions usually pseudo-Voight or Pearson-VII

Bottom-up:

profile-functions are

determined for actual lattice defects based on well-established physical principles

diffraction patterns are fitted by theoretically calculated **defect-related profile-functions**

For many good reasons CMWP follows the **bottom-up** approach

The hierarchy of lattice defects

Krivoglaz: the spatial dependence of strain: $\mathcal{E}(r)$

0 dimensional:

point-defects, point-defect-type, e.g. GP-zones, small particles $\epsilon(r) \sim 1/r^2$

2 dimensional: planar defects, e.g. stacking-faults, twin-boundaries, grain-boundaries, etc. ε(r) ~ constant

The hierarchy of lattice defects Krivoglaz: the spatial dependence of strain: $\mathcal{E}(r)$

0 dimensional: $\epsilon(\mathbf{r}) \sim 1/r^2$ point-defects, GP-zones diffuse scattering below the Bragg reflections

 1 dimensional:
 ε(r) ~ 1/r
 dislocations

 broadening around the Bragg reflection

2 dimensional: ε(r) ~ constant planar defects peak shifts Fundamental equation for line-broadening: Warren [1958]:

$$A_{L}(g) \cong A_{L}^{S} \exp\{-2\pi^{2}L^{2}g^{2}\langle \varepsilon_{g,L}^{2}\rangle\}$$

Strain Fourier coefficients

Dislocation-model of $\langle \varepsilon_{g,L}^2 \rangle$: **Krivoglaz-Wilkens** [1963-1970]:

$$\langle \varepsilon_{g,L}^2 \rangle = \frac{\rho \cdot C \cdot b^2}{4\pi} f(\eta)$$

- **b** : Burgers vector
- ρ : dislocation density
- C: Contrast factor of dislocations

 $f(\eta)$: Wilkens function [1970] $\eta = L/\mathbf{R}_{e}$

The Krivoglaz-Wilkens function [1963-1970]

shape of strain-profiles

dipole character of dislocations

weak dipole character

 $R_{\rm e} > d$

 $M = R_{\rm e}/d = R_{\rm e}\sqrt{\rho} > 1$

strong dipole character

 $R_{\rm e} < d$

 $M = R_{\rm e}/d = R_{\rm e}\sqrt{\rho} < 1$

dislocation loops can have strong dipole character

irradiation at:

280 °C

small loops, with large density

350 °C small loops, with medium density

450 °C

large loops, with smaller density

M. Topping et al. Acta Mater, accepted

dislocation loops can have strong dipole character

irradiation at: 280 °C

small loops, with large density

350 °C

small loops, with medium density

450 °C

large loops, with smaller density

M. Topping et al. Acta Mater, accepted

Fourier transform of the strain Fourier coefficients

$$I^{D}(s) = \int \exp\{-2\pi^{2}L^{2}g^{2} < \varepsilon_{L,g}^{2} > \} \exp(2\pi i Ls) dL$$

where: $\langle \varepsilon_{g,L}^{2} \rangle = \frac{\rho \cdot C \cdot b^{2}}{4\pi} f(\eta)$

dislocation - density : ρ \boldsymbol{M} - arrangement parameter: $q_1(q_2)$

contrast factor - strain anisotropy:

assuming **log-normal** size distribution:

$$f(x) = \frac{1}{(2\pi)^{1/2} \sigma x} \exp\left\{-\frac{[\log(x/m)]^2}{2\sigma^2}\right\}$$

m: median σ : variance

$$I^{s}(s) = \int_{0}^{\infty} \mu \, \frac{\sin^{2}(\mu \pi s)}{(\pi s)^{2}} \operatorname{erfc}\left[\frac{\log(\mu/m)}{2^{1/2}\sigma}\right] \mathrm{d}\mu$$

Philosophy of evaluation

Combined

Levenberg-Marquardt and Monte-Carlo algorithms

applied in a cyclically alternating sequence

Gábor Ribárik, Bertalan Jóni, Tamás Ungár

Global Minimum in the Convolutional-Multiple-Whole-Profile (CMWP) line profile analysis procedure by implementing Monte-Carlo optimization *J. App. Cryst. to be submitted*

CdF₂ ball milled for 12 min

G. Ribárik, N. Audebrand, H. Palancher, T. Ungár and D. Louër, J. Appl. Cryst. (2005). 38, 912–926

Powder pattern file

2-column file, contains: 2Θ , *I* or $d^{*}(1/nm, I)$

20	Ι	or	d*(1/nm) I		
: 100.7800 100.7950 100.8100 100.8250 100.8400	335 331 335 331 342		1.005 120 1.010 122 1.025 118 1.030 130 1.035 126		
	330		•		

CMWP = p.48/70

Typical instrumental profiles: laboratory X-rays

Background spline

CMWP frontend

CMWP fit control	All-users/Tomota-Yo-Japan	/Test/310-stailess-steel-Tensile	-40/s40		_
CUBIC		HEXAGONAL		ORTHOROMBIC	-
at a (CUB HEX ORT) [nm]	0.359	lat_b (ORT) [nm];		lat_c (HEX ORT) [nm]:	
Burgers vector [nm]	0.254	Wavelength [nm]:	15	Ch00 or Chk0:	0.28
Don't include size effects		Use ellipsoidal size func.		Use individual C factors:	
Include St. Faults effects			stacking.dat file,	SF-dat-files/fcc/sf_cu_twin.dat	Browse
Use weights:		Weighting algorithm (1-4).	1	Disable coinc. g^2 code:	
Use instrum, profiles,			Instrum. profiles dir.	All-users/Tomota-Yo-Japan/LaB6_s	Browse
Fit peak int.		Fit peak pos.	M	Use 2 W.f. asymmetry:	
Fit in K instead of 2"theta:		Clone peak-index.dat file.		Clone bg-spline.dat file:	
FT limit (if no instr. eff.):		Use FFT:		FFT cutting parameter (0-1):	.25
Profile cutting parameter	2	N1,	1024	N2:	1024
Min. 2*theta/K.	3.3		Max. 2*theta/K:	14.2	
init_a (q, CUB):	2	init_al (HEX ORT):		init_a2 (HEX ORT):	
a_fixed.		al_fixed:		a2_fixed:	
init_a3 (ORT):		init_a4 (ORT):		init_a5 (ORT):	
a3_fixed		a4_fixed:		a5_fixed:	
init_epsilon:	1	epsilon_fixed:			
init_b (m):	433.789	b_fixed:			₽
init_c (sigma):	1	c_fixed:			
init_d (Rho14):	1	d_fixed:			
init_e (M*):	0.387055	e_fixed:			
init_st_pr:	0.65587	st_pr_fixed:		Set fit parameters	Update peak-index.dat
Number of phases:		Fit ONLY phase No:		Edit phase No:	
Call MKSpline	Call MKSpline2	Index peaks	Set individ. C values	Clone INI files	Save INI files
(Re)Start FIT	Stop FIT	Update Params	View Solutions	View FIT	Exit

CMWP frontend

CMWP fit control	All-users/Tomota-Yo-Japan	/Test/310-stailess-steel-Tensile	-40/s40		
CURIC		HEXAGONAL		ORTHOROMBIC:	
at a (CUBIHEXIORT) [nm]	0.359	lat_b (ORT) [nm];		lat_c (HEX[ORT) [nm]:	
Burgers vector [nm]:	0.254	Wavelength [nm]:	.15	Ch00 or Chk0:	0.28
Don't include size effects		Use ellipsoidal size func.		Use individual C factors:	
Include St. Faults effects			stacking.dat file.	SF-dat-files/fcc/sf_cu_twin.dat	Browse
lise weights	2	Weighting algorithm (1-4).	1	Disable coinc. g^2 code:	
Use instrum, profiles:			Instrum. profiles dir.	All-users/Tomota-Yo-Japan/LaB6_s	Browse
Fit neak int.	R	Fit peak pos.	R	Use 2 W.f. asymmetry:	
Fit in K instead of 2"theta:	2	Clone peak-index.dat file		Clone bg-spline.dat file:	
ET limit (if no instr. eff.);		Use FFT.		FFT cutting parameter (0-1):	.25
Profile cutting parameter	2	N1:	1024	N2:	1024
Min. 2*theta/K	3.3		Max. 2*theta/K:	14.2	
init_a (q, CUB):	2	init_a1 (HEX ORT):		init_a2 (HEX ORT):	
a_fixed		al_fixed:		a2_fixed:	
init_a3 (ORT):		init_a4 (ORT):		init_a5 (ORT):	
a3_fixed		a4_fixed:		a5_fixed:	
init_epsilon:	1	epsilon_fixed:			
init_b (m):	433.789	b_fixed:			₩ A
init_c (sigma):	1	c_fixed:			
init_d (Rho14):	1	d_fixed:			
init_e (M*):	0.387055	e_fixed:			
init_st_pr:	0.65587	st_pr_fixed:		Set fit parameters	Update peak-index.dat
Number of phases:		Fit ONLY phase No:		Edit phase No:	
Call MKSpline	Call MKSpline2	Index peaks	Set individ. C values	Clone INI files	Save INI files
(Re)Start FIT	Stop FIT	Update Params	View Solutions	View FIT	Exit

Thank you