

Přemysl Beran, <u>Jan Šaroun</u> Nuclear Physics Institute CAS, Czech Republic Jochen Fenske, Gregor Nowak, Mustapha Rouijaa Helmholtz-Zentrum Geesthacht, Germany

- Multiplexing mode is specific to BEER
- Development of data reduction SW is required
- Proof of principle and validation on simulated data have been done

Primary diffractometer ray-tracing simulation with **Simres**

Beam structure at the sample produced by the modulation chopper

280 Hz, 8 slits x 4° (*), input slit 1 x 2 mm²

(*) Considered replacement for the original proposal 4 x 4°.

Secondary diffractometer: ray-tracing simulation with McStas

Detector parameters:

- resolution (h x v) = $2 \times 5 \text{ mm}^2$
- $L_{\rm free} = 1 \, \rm cm \, Å$
- area 1 m²

Sample: duplex steel

The components *SampleN.comp* and *Incoherent.comp* were used to model dia=7 mm duplex steel rod in 45° orientation.

New component (tof_dhkl_detector.comp) has been written to perform event based data reduction in modulation regime.

time / sin(θ)

- 1. Guess d_0 and find the nearest line, or
- 2. Pick the $I(t / \sin \theta)$ line with the smallest FWHM.

How to find the "master" line with *n*=0 ?

McStas detector component tof_dhkl_detector.comp

- Accounts for spatial and time resolution of the detector
- Performs conversion of detection events (x, y, z, time) \rightarrow (2 θ , time) \rightarrow $d_{\rm hkl}$

Handling of multiplexed data:

- Requires a list of d_{hkl} estimates.
- Estimates the index of the nearest t_0 chopper window and corrects for its phase.
- Excludes overlapping lines. Only (2θ, time) events along the expected lines are processed.

Accumulated diffractograms assuming a single chopper window (black) and with account for the modulation (red).

Requirements

- We prefer raw data as a list of events rather than a 2D matrix (t, θ)
 NOTE: ~ 10⁵ counts in the diffraction signal is enough, but a high pixel resolution is required (δt < us, δθ < 0.05 deg) => ~ 10⁷ pixels in a matrix.
- Recording of the modulation chopper phase is necessary. A drift by > 1µs causes observable pseudo strains.
- Interactive UI allowing control of the data reduction steps explained above:
 - 2D plots: $I(\theta, t)$, $I(\sin \theta, t/\sin \theta)$
 - 1D plots: $I(t/\sin \theta)$, $I(d_{hkl})$
 - assignment of the diffraction sub-lines to the chopper slit index
 - selection of valid areas on the $I(\theta, t)$ map

Conclusions

- Data reduction to the standard 1D diffractograms is feasible (validated on synthetic data) => using of standard data analysis SW (FullProf, MAUD, Jana, ...) should be possible.
- Suitable for lattice strain measurements (peak shifts and broadening).
- Limited use for low-symmetry and multiphase materials (too many overlaps)
- Rietveld analysis to be tested. Normalization of intensities: using of an isotropically scattering sample (PE, plexi glass, V) should work, but ...
- Possible additional problems with d_0 determination: uncertainty of $\pm \frac{\Delta T}{t} d_0$.
- Peak broadening limited to $< \frac{\Delta T}{t}$ (should be OK for usual bulk materials, but not for fine grained phases)
- Options for 2D pattern fitting to be investigated ...