Warsaw University of Technology

PRL Temperature Stabilization System

Radosław Papis

System overview – Requirements

- Temperature stability: +/- 0.1°C
 - Based on phase stability requirements
- Materials: fireproof and radiation resistant
 - ESS requirements
 - Prohibited material:
 - PVC(heaters insulation) due to fire safety
 - PTFE due to radiation resistance
 - PET due to radiation resistance
 - Much more...

System overview – Concept

• Tunnel:

- Heating tape on line
- Platinum temperature sensors
- Thermal insulation
- Klystron Gallery
 - Temperature Stabilization Control Boxes
 - Industrial PC/Server with controlling software

System overview – Concept

System overview – Concept

System overview – Loop placement

 Stabilization loop covers two section of rigid line an coupler in the middle.

Design - Heaters

- Rigid line
 - Silicon insulated heating cable
 - 50W per ~4m
- TapPoints and other stuff
 - Silicon insulated heating mat
 - Power depend on element mass and heat capcity

Design – Temperature sensors

- PT100 sensors selected
 - Popular in industry
 - Platinum wire on ceramic insulator
 - Soldered silicon insulated cable with connector

Design – Line insulation

- Rigid line
 - ThermaSmart PRO Standard Pipe insulation tubes
 - Material: thermoplastic polyolefin foam
- TapPoint, couplers, power divider
 - ThermaSmart PRO insulation sheets

Design – Cables

Shielded cable for temperature sensors

3x1.5mm² for heaters

PP and PUR insulation

Design – connectors an junction box

- Junction box on TapPoints
 - Metal enclosure with connectors
- ST12 industrial connectors from WEIPU
 - Zink body, polyphenylene sulfide (PPS)

Design – Temperature Control Box

- Control box installed in klystron galery
- Based on Beckhoff terminals
 - PWM + SSR's for heaters
 - Temperature to digital converters

Separate computer for loop algorithms

Comunication : EtherCAT

Design – Control software

- Installed on one Industrial PC
- System:
 - EPICS Experimental Physics an Industrial Control System
 - Based on real time linux
 - Special driver for EtherCAT
 - Supported by ICS
- Algorithm:
 - PID implemented in SNL (final)
 - Cooperation with ICS
 - PID implemented in python (test)

Design – Network

Based on network switch and Virtual LAN

Design – Installation

- Cable database for STUBS PREPARED
- Space in Klystron Gallery RACK's RESERVED
- Temperature control boxes Preparing for production
- Junction Boxes Preparing for production

Prototype – Schematic

- Seven loops implemented at WUT
- 30 mm of insulation

Prototype – Results

- +/- 0.1°C degrees can be achieved
- 2 degrees ambient temp. change

Prototype – Results

Problems with insulation and heating on couplers

Prototype – Conclusions

- Generally it will work!
- Problems with insulation and heating on couplers
 - Poor insulation coupler in prototype.
 - Low power of heater on coupler

Prototype – Plans

- 1. Prepare TCB and Junction Box to production
- 2. Order elements, procurements
- 3. Run more test on prototype
- 4. Assemble TCB and Junction Box prototype, test it.
- 5. Start production
- 6. Start installation in KG
- 7. Run system

Prototype – Identified Risks

- TCB Influence of KG ambient temperature on stability
 - Should be investigated
 - Add temperature stabilization inside TCB
- Problem with coupler temperature
 - Change power of heaters on coupler
 - Connect temperature sensor on coupler into stabilization loop
- Network and STUB cables are needed to commissioning