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Simulation efforts in DG (Detector Group)

PROJECTS (G. Albani, X. X. Cai, E. Dian, G. Galgdczi, K. Kanaki, T. Kittelmann, M. Klausz, D. Lucsanyi, V. Maulerova, D. Pfeiffer, J.

Scherzinger, |. Stefanescu, C. Spgaard)
* The majority of detector demonstrators have been modeled (MultiGrid, MultiBlade, He3, BAND-GEM, B/Gd-GEM, Jalousie, Si
sensors, boron-coated straws, macro-structured MWPC, flat MWPC, plastic scintillators, Source Testing Facility@LU)

* Geant4 is the main working horse.
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Simulation efforts in DG (Detector Group)

TOOLS & UTILITIES (T. Kittelmann, X.X. Cai)

 MCPL — Monte Carlo Particle Lists: glues the IO between Geant4, McStas, MCNP and
more

» ESS Detector Group Coding Framework for detector modelling with Geant4

* NXSG4: extension library for description of neutron interactions in poly-crystalline

materials (T. Kittelmann, M. Boin. "Polycrystalline neutron scattering for Geant4: NXSG4", Computer Physics
Communications 189, 114-118 (2015), doi:10.1016/j.cpc.2014.11.009)

* NCrystal: neutron interactions with poly- and single-crystals, and background
processes (see Xiao Xiao’s presentation)

Overview of simulation tools summarized at https://arxiv.org/abs/1708.02135, submitted to Physica B Condensed Matter




Monte Carlo Particle Lists: MCPL

(T. Kittelmann, E. Klinkby, E. B. Knudsen, P. Willendrup)
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Red: already implemented, MCNP5 added recently

Contact:
mcpl-developers@cern.ch

T. Kittelmann et al., “Monte Carlo Particle Lists: MCPL”, Computer Physics Communications,
Volume 218, September 2017, Pages 17-42, ISSN 0010-4655
https://doi.org/10.1016/j.cpc.2017.04.012
http://sine2020.eu/news-and-media/mcpl-a-new-format-that-
simplifies-data-interchange-between-applications.html

Well-defined and flexible binary file format
containing full information of particle
properties

Facilitates communication among software
packages (e.g. McStas, Geant4, MCNP)

* Can be easily implemented for other simulation packages
* C/C++/python hooks available
Can be used within a single software
application

MCPL files can be modified, merged, filtered
and histogrammed

* With a single terminal command
* Enhanced facilities within the ESS simulation framework

https://mctools.github.io/mcpl/

Open source tool, available to everyone



MCPL use-case for detector optimization

* Detector design can benefit from
optimization against ‘realistic’

input (not only monochromatic or 10° ‘ ‘ ‘ —
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ESS Detector Group Simulation Framework

(T. Kittelmann, X. X. Cai, K. Kanaki)

* Geant4 simulation framework
* Developed by ESS Detector Group
e Used by other ESS groups e.g. Accelerator Division,
Target Division, Neutron Optics and Shielding Group,
in-kind collaborators

* Includes:

User-friendly build system
Python interface

3D visualisation (via Open Scene Graph)
Easy-to-handle histograms for analysis o
Griff: an user-friendly binary format for saving results i
Powerful parameter scanning without source code recompilation

* Intuitive & well documented
* Fast development of new simulations

Contact:
T. Kittelmann, et. al, J. Phys. Conf. Ser., 513 (2014) 022017 Available, just Thomas Kittelmann: thomas.kittelmann@esss.se

_ a1l Xiao Xiao Cai: xcai@dtu.dk 6
Send an e mall' Kalliopi Kanaki: kalliopi.kanaki@esss.se




Structure of today’s NSS seminar

* Focus on utilities: “Monte Carlo simulation of thermal neutron
scattering processes in condensed matter “ by Xiao Xiao Cai

* Focus on an application: “An application — the Multi-Grid Detector
Model” by Eszter Dian



Monte Carlo simulation of
thermal neutron scattering
processes in condensed matter

Complete detector and experiment
simulation

Xiao Xiao Cai, DTU & ESS
(xcai@dtu.dk)

Thomas Kittelmann, ESS
(thomas.kittelmann@esss.dk)
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Crystalline materials

Arguably, the most important material type for detectors.
Nuclear scattering in these materials is described as neutron-
phonon scattering, where a phonon is a quantum state

of collective excitation.

Often used in their powder and polycrystalline forms.
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Wave-particle duality
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A measured neutron laue transmission pattern of a crystal.
Taken from Zerdane et al., Acta Cryst. (2015). B71, 293-299.

Wave-particle duality implies different behaviours of neutron interactions with
matter. Transmission pattern of neutron is generally discrete when the wavelength is
comparable with the target structure (i.e. coupling distances of atomic motions in the
case of thermal neutrons). 3/16



Neutron nuclear scattering

* C(Classical: free gas approximation

— Neutron scatters with a freely moving target nucleus, elastically in the centre-
of-mass frame.

* Quantum: space time correlation
— G, known as the time-dependent pair-correlation function.
— |, known as the intermediate scattering function, is measurable in neutron spin
echo spectroscopy.
— S, known as the dynamic structure factor or scattering kernel, is measurable in
inelastic neutron scattering.

The work of modelling the quantum thermal scattering
boils down to two parts:
* generating a numerical representation of the 5o 2 ﬁE;
physical properties (e.g. S) AE0 //t’” t) exp(irr) exp(icwt)drdi

* sampling the numerical data. _bg\l -jm_ ) expliwt)di
=/ & ¢, 1) exp(iwt)dt
[E"

=V VE Sk 4/16



Getting numerical representations of physical
properties (e.g. S)

The DFT (density functional theory) community is flourishing

* Ab initio methods are promising techniques for predicting material
properties.

* In many cases, the disagreement between the calculated and
measured total scattering cross sections is approaching the intrinsic
uncertainty of employed theoretical approximations and the

uncertainty in the experiments.
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NCrystal: a library for thermal neutron transport in crystals (
http://mctools.github.io/ncrystal/)

* Objectives:

Create open source library which is capable of providing crystallographic information and in particular
facilitates simulation of thermal neutron interactions with crystals in new or existing frameworks.

In particular we wanted to use it to make the Geant4 simulation toolkit capable of including such
detailed neutron+crystal physics.

Should be relatively simple to add new materials and get reasonable results (simply providing unit cell
parameters of the crystal should be enough), and possible to provide more detailed data (e.g.
scattering kernels from DFT calculations) for increased realism.

Code should be robust, fast and maintainable with many interfaces (C++, C, Python, Geant4, McStas,

..)

*  Functionalities:

Load crystal information from variety of crystallographic file formats
Provide relevant derived quantities (like lists of hkl reflection planes and associated structure factors).
Large number of physics models available, representing both different physics processes and different

models for a given physics process:
* Provides cross sections and ability to sample scattering distributions (using application specific RNG if desired)
* Justify the selection of models numerically.

Unified configuration interface (a simple string) across all interfaces. The same string defines the the
identical physics model, regardless the programming languages or platforms.

Cross section in absolute scale.
Thoroughly validated.
Examples provided for Geant4 and McStas. 6/16


http://mctools.github.io/ncrystal/
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NCrystal polycrystal/powder

Si02_sgl54 Quartz.ncmat
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On the left, contributions from different processes to the total cross
section in quartz.

On the right, neutron (in green) and secondary gamma (in yellow)
trajectories generated by neutron scattering with Al powder at the centre
of the box. Generated in NCrystal-enabled Geant4.
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Total cross section calculated by NCrystal

Additional 30 validation figures are available at https://github.com/mctools/ncrystal/wiki/Data-

library
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NCrystal single-crystal
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The single-crystal model is a high accuracy Darwin equation solver for ideal mosaic

crystals in arbitrary geometry. Energy resolution and divergent of the reflected beams are

in excellent agreement with analytical models.

e On the left, simulated neutron transmission pattern of Leiteite (ZnAs204) on a 2D
position sensitive detector.

» The zig-zag walk of thermal neutrons in a Ge single crystal, as a result of ping-ponging
by the reflection planes with opposite normals. Generated by NCrystal-enabled Geant4.
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Total cross section calculated by NCrystal
v0.9.1) in single crystals

Additional 30 validation figures are available at https://github.com/mctools/ncrystal/wiki/Data-

library
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Status of NCrystal

Initial release(v0.9.1 released Aug 2017)

— Detailed treatment for the coherent elastic scattering (i.e.
Bragg diffraction) in single- and poly-crystals.

— Reliable for estimating the total inelastic scattering cross
section (based on the Debye approximation with high
order phonon expansion).

— Data files for 35 materials are available in this release.

— Additional data files can be made available by request.

— X. X. Cai and T. Kittelmann, NCrystal,
https://doi.org/10.5281/zenodo.853186, available at
http://mctools.github.io/ncrystal/.

Next major release spring 2018 (in preparation)

— Detailed treatment for the inelastic scatterings e


http://mctools.github.io/ncrystal/

Physics model in the next release

The main objective of the next release is to improve the
inelastic scattering model, which is currently under a
few layers of approximations.

(1) harmonic approximation

(2) incoherent approximation

(3) Debye approximation

Theory is ready. A prototype is validated. In the quality
assurance phase of generating data files.

Users can provide their own physics (e.g. for liquids)
that are compiled in the form of S(Q,w) in a .ncmat file.

12/16



DOS, 1/meV

Debye approximation

* An optional add-on for the incoherent approximates. Describe
the vDOS (vibrational density of states) by a power law curve.

* Effective for total cross section estimation.

* Valid if the scattering media is large.
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The vDOS from DFT and its  Energy distributions of 1e7 inelastically scattered neutrons (0.1eV
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Debye curve. Statistically equivalent mean. 13/16
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Incoherent approximation

It approximates G(r,t) by G(0,t). Considering only the correlation of an atom with itself at
different time. Unable to reproduce the structure peaks originated from the coherent
interference.

The vDOS is only dynamical perperty considered. Used for the inelastic scattering.

OK for

— hydrogen rich and other strong incoherent materials, where the incoherent scattering is dominant.

— coherent material with large size (a few time of the free mean path), so the structure peaks smear
out after a few scatterings.

Bad for thin Coherent scatterers
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On the left, the coherent S(Q,w) for Al powder. On the right, the corresponding approximation.



Harmonic approximation

* |t assumes the atomic displacement is small comparing to
atomic distances; phonon is not interacting with the media.
* Good for materials at low temperatures
* Bad for materials at high temperatures
* Quasi-harmonic approximation will be applied in its place.
Additional phonon linewidth can be included.
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Left, phonon dispersion of Al at 80K and 300K. Middle, phonon linewidth of Al at 800K.

Al cross section at 100K, 300K and 800K.
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Summary

NCrystal is enabled by default in the detector group coding framework.
Examples are also provided for stand alone Geant4 and McStas
simulations.

NCrystal is easy to use. It requires only a few lines of modification on
existing Geant4 or McStas simulations.

Geant4 can simulate a large variety of particles in a wide energy range.
Along with NCrystal, it is feasible to simulate neutron instruments in full
scale to understand the intrinsic radiation background.

NCrystal is available at http://mctools.github.io/ncrystal/.

16/16
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Detector background study

with Monte Carlo codes

e Sources of neutron detector background
— Neutron induced gamma background (MCNP6)

* Prompt gamma radiation from neutron capture
* Decay gammas from neutron activation

|

41Ar activity saturates at 128 mBq/cm3 —> low

Negligible signal from
self-activation

— Scattered neutrons (Geant4)
* Elastic, inelastic

* Coherent, incoheren

Great impact of Coding Framework!
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SOURCE

General neutron activation
study prepared with MCNP6
for ESS operation conditions
- Ar/CO, counting gas

- Aluminum-frame

E. Dian et al.
10.1016/j.apradiso.2017.06.003
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Large area detector for chopper O

spectroscopy — Multi-Grid

Geant4 @Coding Framework

Multi-Grid
* Large area detector

* Inelastic instrument,
chopper spectroscopy

Low background is essential

* Solid B,C converter + Ar/CO,
¢ Aluminium frame — crystalline Al

Scattered neutron background
induced in detector

A. Khaplanoy et al.
http://dx.doi.org/10.1016/j.nima.2012.12.021




Scattered neutron background

* Neutron scattering on detector .
. Prototype Validation
and environment l,
e Study and distinguish background effects l
l Full-scale detector model Optimization

* Guidelines for detector design

Realistic simulation
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== En,e ffective
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Geant4 @Coding Framework




Multi-Grid detector test at ILL [

In-beam test of the Boron-10 Multi-Grid neutron S. Agostinelli et al

detector at the IN6 time-of-flight spectrometer at d0i:10.1016/50168-9002(03)01368-8
T. Kittelmann et al

the ILL doi:10.1088/1742-6596/513/2/022017

A. Khaplanov et al. No shielding on the rear wall of grids
http://iopscience.iop.org/article

10.1088/1742-6596/528/1/012040/pdf




Multi-Grid detector test at ILL m @

Measured data (ToF, depth of detection)

Measured scattering phenomena can be studied with simulation inside the detector
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MultiGrid detector test at ILL [1({

Measured and simulated ToF-depth of detection

Geant4 @Coding Framework Backscatter from the unshielded
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rear wall of the detector at 4.6 A http://nxsg4.web.cern.ch/nxsg4/
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MultiGrid detector test at ILL

Measured and simulated ToF spectra

Measured and simulated tof spectra at 4.6 A
Normalised to area

T !

—— measured
—— simulated |
—— simulated + estimated background | |

|

£r

EUROPEAN
SPALLATION
SOURCE

NXSG4

Estimated flat

alpha-background
added (red),
unique for this
prototype

Measured

ToF-spectrum
reproduced with

simulation at 4.1/

and 4.6 A

t,+0.5 t,+1.0 t,+1.5 t,+2.0

ToF [ms]

Validation




EUROPEAN
SPALLATION
SOURCE
NXSG4

()

V)
zZ
V)
S’
@)
=z
@)
s
(g
.
(Vs
Q
s
-
O
s
O
Q
)
()
e
D

Gr

Multi

Geant4 @Coding Framework




MultiGrid detector test at CNCS, SNS

Derived energy transfer at 3.678 meV from

measurement
107 :
| I Chopper spectroscopy
| 1o .y . .
070 By = g - Enna Measured quantities:
_ — ToF
107 — detection-coordinates
§ 10 l
- i
10 Energy transfer:
‘ T Etrf = Einitial_ EﬁnaI
i m HH HH
10-7 il [T
-1.0 -0.5 0.0 0.5 1.0
Anton Khaplanov et al.: Energy [meV]
Multi-Grid Detector for Neutron Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS 14

doi:10.1088/1748-0221/12/04/P04030, https://arxiv.org/abs/1703.03626




Large area detector for chopper O

spectroscopy — Multi-Grid

Geant4 @Coding Framework

Measured data:
 ToF
Detection point coordinates

Energy

Sample — detection point distance
#

Real neutron path

A. Khaplaney et al.
http://dx.doi.org/10.1016/j.nima.2012.12.021
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MultiGrid detector test at CNCS, SNS spaLLATN

Geant4 simulation Effects on energy transfer from hits at 3.678 meV NXSG4
10% normalised to area
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MultiGrid detector test at CNCS, SNS spaLLATN

Geant4 simulation Effects on energy transfer from hits at 3.678 meV NXSG4
10° normalised to area
i bare detector l ' l
:— detector |
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107} :
: Elastic peak
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i Etrf - Einit'ial - Eﬁnal / ]
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107} / -Q

107}

Normalised counts
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MultiGrid detector test at CNCS, SNS spaLLATN

Geant4 simulation Effects on energy transfer from hits at 3.678 meV NXSG4
10° normalised to area
- bare detector ' l
| — detector
103 [|— detector + Gaussian initial energy _
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Geant4 simulation

Normalised counts
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MultiGrid detector test at CNCS, SNS spaLLATN

102}

102}

Effects on energy transfer from hits at 3.678 meV NXSG4
normalised to area
I bare detector l
—— detector
[|— detector + Gaussian initial energy
F|—— detector + Gaussian initial energy + Ar in chamber B
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Etrf = Einit'ial - Eﬁnal /
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MultiGrid detector test at CNCS, SNS spaLLATON

Geant4 simulation

Normalised counts

Effects on energy transfer from hits at 3.678 meV NXSG4
10° normalised to area
bare detector '
—— detector
3 ||—— detector + Gaussian initial energy

107 detector + Gaussian initial energy + Ar in chamber B

—— detector + Gaussian initial energy + Ar in chamber + sample environment (cryostat)
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MultiGrid detector test at CNCS, SNS

Geant4 simulation

Normalised counts

104

10°

10}

10}

10°}

10}

Effects on energy transfer from hits at 3.678 meV NXSG4
normalised to area
[|— measured '
bare detector
[|— detector
F|—— detector + Gaussian initial energy E
| —— detector + Gaussian initial energy + Ar in chamber
| —— detector + Gaussian initial energy + Ar in chamber + sample environment (cryostat)
Elastic peak
Etrf = Einit'ial - Eﬁnal / ]
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from detector
h l“ K, )y
21
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Normalised counts

MultiGrid detector test at CNCS, SNS

Effects on energy transfer from hits at 3.678 meV
normalised to area

Validation

10%¢
10°}
102}

10t}

100}

—— measured
bare detector
—— detector
—— detector + Gaussian initial energy
—— detector + Gaussian initial energy + Ar in chamber

—— detector + Gaussian initial energy + Ar in chamber + sample environment (cryostat) |

Etrf = Einitial B Eﬁnal Elastic peak

Scattered neutron background / Scattered neutron background
from detector -

from sample environment

ill* M J oy .‘

g

Ll

0.0 05
Neutron energy [meV]

Energy transfer /

reproduced with
simulation at 3.678 meV

Distinguish different
sources of background

Detailed analysis and
qguantification of
background effects

1.0

l

Optimization
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Conclusion

e Realistic Multi-Grid model built

Instruments with better
— reproduced measured results from i onal-to-back d
IN6 and CNCS experiments — signal-to-backgroun

ratio by design

* Ready to use for optimization

l |
\
\
\
\
\
\
\
\
\

* Predicament for background
sources and levels in full-scale
detector

e Shielding and design |
optimization in the level of /
grids, columns and full-scale
detector
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More on simulations... Q

MultiBlade (ESS/Wigner/LU/LiU)
e |KON13 next week N

— Thursday, 28/9: all day detector section

— 16:00 Tankartanken (last talk before site visit):
Joint talk of Hungarian student group of ESS Detector Group
on detector modeling:

:
) ) o o eflectometry
Eszter Dian'2 Gabor Galgdczi34, Milan Klausz!-2 K
Multi-Grid MultiBlade BCS&Bifrost
Hungarian Academy of Sciences, Centre for Energy Research PTI Boron-coated straws

2European Spallation Source ESS ERIC
3Wigner Research Centre for Physics
4Institute of Physics, E6tvos Lorand University,

MultiGrid (ILL/ESS/LiU)

Sh i Thank you for your attention!
3pectroscopy 3
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Counts

10”7
-1.0

MultiGrid detector test at CNCS

[Anton Khaplanov]

Derived energy transfer at 3.807 meV from
measurement

107}
107}
10}

10°}

| * Chopper spectroscopy

| » Measured quantities:
|  — ToF
— detection-coordinates

l

| ¢ Energy transfer:

Etrf = Einitial - Eﬁnal

Etrf = Elnltlal Eﬁnal

- measured

0.0 0.5 1.0
Energy [meV]

i

Anton Khaplanov et al.:
Multi-Grid Detector for Neutron Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS 26
Submitted to JINST arXiv:1703.03626




Geant4 simulation

Normalised counts
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MultiGrid detector test at CNCS, SNS spaLLATN

10°}
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Effects on energy transfer from hits at 3.807 meV NXSG4
normalised to area
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MultiGrid detector test at CNCS, SNS spaLLATN

Geant4 simulation Effects on energy transfer from hits at 3.807 meV NXSG4
10° normalised to area
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MultiGrid detector test at CNCS, SNS spaLLATN

Geant4 simulation Effects on energy transfer from hits at 3.807 meV NXSG4

10° normalised to area
I 1
j— detector
|— detector + Gaussian initial energy
—— detector + Gaussian initial energy + Ar in chamber
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MultiGrid detector test at CNCS, SNS

Geant4 simulation

Normalised counts
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10° }
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Effects on energy transfer from hits at 3.807 meV NXSG4

normalised to area
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101}

Geant4 simulation Effects on energy transfer from hits at 3.807 meV NXSG4
10° normalised to area
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Normalised counts
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MultiGrid detector test at CNCS

Effects on energy transfer from hits at 3.807 meV
normalised to area
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