

EUROPEAN SPALLATION SOURCE

BLM update & overview

Irena Dolenc Kittelmann (BLM System Lead)

BI Forum, ESS, Lund, Sweden, 20-22/11/2018

Outline

• ESS BLM:

- Reminder
- MC beam loss simulations
- nBLM
 - HW overview
 - FPGA functionality & neutron detection algo
- Other updates not covered
 - Detector layout
 - Electronics layout
 - icBLM FPGA functionality

ESS BLM

Two BLM systems

icBLM

- Primary monitor in the high energy parts
- Detector: ionization chambers (ICs)
- nBLM
 - Primary monitor in the low energy parts
 - Detector: neutron sensitive micromegas detectors

	Num. of devices								
Linac section	icB	LM	nBLM						
_	comment count		comment	count					
MEBT		/		2F+2S=4					
DTL	1/tank	5×1=5	8/tank,2/end	$5 \times (4F + 4S) + 1F + 1S = 42$					
Σ		5		23F+23S=46					
Spoke	1/cryo,3/2q	13×4=52	1/2q, 1/cryo	13×(F+S)=26					
MB	1/cryo,3/2q	21×4=84		1F+1S=2					
HB	1/cryo,3/2q	9×4=36		1F+1S=2					
MEBT	3/2q	16×3=48		/					
A2T									
ramp	1/bend,3/2q	$6 \times 3 + 2 \times 1 = 20$		1F+1S=2					
to target	3/2q, 3/4rast.	3×3+2×3=15		2F+2S=4					
dump	1/mag.	6		/					
Σ		261		18F+18S=36					
$\Sigma\Sigma$		266		41F+41S=82					
$\Sigma\Sigma\Sigma$			•	348					

. .

C 1

1

ESS BLM: beam loss simulations

MC simulations for tracking of lost protons needed to determine

- Detector locations, system response time and dynamic range
- Expected particle fields, signals
- Initial MPS threshold settings at the startup and later adjustments
- Anticipated response of the system during fault studies to verify and calibrate the system response

Required inputs

- Ideally
 - Expected loss maps during normal operation
 - A list of accidental beam loss scenarios with loss maps
 - Elements to be protected, damage levels
- Large number of possible accidental scenarios: simplifications/assumptions needed

Simulation tool

- Geant4 simulation framework developed by the ESS neutron detector group
- Geant4 based ESS linac geometry created (current version: DTL HEBT)

ESS BLM: MC simulations - linac geo

Past studies

- Focused on DTL
- Tanks surrounded with "phantom detectors"
- Loss scenarios:
 - Accidental losses: scanned over various configurations of energy, beam size, hit angles and position along the DTL
 - Uniform loss, 1W/m loss
 - Nominal operation
- Studied:
 - Expected particle fields (type, energy, fluxes along the beam line)
 - Correlation between the loss location (center) and peak position in neutron hitmaps
 - Spread (RMS) of neutron hitmaps
 - Threshold energy to discriminate fast/slow neutrons

0 -1000

Hitmaps for det2

'detector" volume

- Tasks:
 - Support nBLM detector design, results used

integri meanx rmsx meany rmsy covxy covxy corxy xmin xmax ymin ymax

- As inputs to MC simulations to optimize detector design
- For signal estimations
- nBLM detector layout

Sim2-9: loc. loss at the beginning of the DTL5 (histogram normalized per number of primaries): hitmap mean=-2.76m Gauss fit mean = -3.56m Peak visible ~3.5m

z [mm]

EUROPEAN SPALLATION

SOURCE

0.00002

4000

-3000 -2000

EUROPEAN SPALLATION SOURCE

Current focus

- Cold linac
- Loss scenarios:
 - Scanned over various for various configurations of energy, beam size, hit angles and position along the cryo modules or quads
 - Uniform loss, 1W/m loss
 - Nominal operation
- Tasks:
 - Expected particle fields (type, energy, fluxes along the beam line)
 - Estimate signals/rates
 - Correlation between loss location and peak in distributions (hitmaps, Edep) & spread
 - Starting point for further studies
 - Determination of loss location (loss pattern) from the measurements (ANNs?)
 - MPS Thresholds

Example: energy deposition summed over 4 center slices along x

- 220MeV protons,
- Beam center hits inside a Spk cryo: on 1st insertion in 1st Spoke cavity

EUROPEAN SPALLATION

SOURCE

Theta=1mrad

EUROPEAN SPALLATION SOURCE

Example:

- 220MeV protons
- Hit center inside Spk cryo at 1st insertion in 1st Spk cavity (z=1650mm)
- Theta=1mrad

<u>Plots:</u>

- Phi vs Z for particles at r=752mm from the beam axis
- Particle types (n, gamma, e-,...)

EUROPEAN SPALLATION SOURCE

nBLM

nBLM: collaboration

EUROPEAN SPALLATION SOURCE

CEA DEDIP (BD IK)

- Detector and FEE design & production
- Gas system and mechanical support design & fabrication/procurement
- Procurement of part of DAQ HW (digitizers, HV, LV, short cables)

CEA DIS (ICS IK)

Monitoring and control SW

LUT DMCS (ICS IK)

 FPGA FW design and implementation

ESS BD

- System architecture, for example
 - Detector and electronics layout
 - Mechanical support integration
 - Gas lines 3d model
 - Development of specifications and requirements
 - Spec. relevant for detector design
 - Def. of FW and SW functionality
 - Def. of data processing (FPGA algos)
 - Definition of monitoring variables and algos
 - Beam loss simulations: MC simulation of lost protons
- Installation
- System commissioning
- Coordination & project management

ESS ICS

FW and SW support and integration

nBLM: overview

Detectors

- Micromegas detectors (CEA), designed to be:
 - Sensitive to fast neutrons suppression of thermal neutrons (no correlation with beam loss)
 - Insensitive to low energy photons (X- and γ -rays) to suppress the RF induced photon background
- 2 types
 - "Fast" nBLM-F: to detect fast losses
 - "Slow" nBLM-S: aimed to monitor slow losses
- See talk by P. Legou for update on detector tests

nBLM: overview

- FEE:
 - Custom made mezzanine card with FAMMAS preamps (CEA)
 - Housed in a detector module together with the detector chamber and HV mezzanine card
- BEE
 - IOxOS IFC1410
 - ADC3111 FMC digitizer (250MS/s, DC coupled).

- nBLM block diagram: FPGA based data processing, connection to SW
- See talk by G. Jablonski regarding implementation

EUROPEAN SPALLATION

SOURCE

EUROPEAN SPALLATION SOURCE

DOD data:

Global Beam

Protection Proc

Jpstream Diag

system

8 x sig wavefo

ch0

ch7

- available on demand (DOD trigger assert)
- DOD trigger request types
 - Post mortem
 - Conditional
 - Periodic
- nBLM DOD CBs:
 - Raw data every 4ns
 - 1st stage of processed data every event
 - EventInfo
 - 2nd stage of processed data every MTW (monitoring time window =1µs):
 - Neutron counts
 - Background counts

Raw Data type con

DOD read

Number of +/- ADC saturations

@250MS/s

ch0 CB0

nBLM: signal

nBLM mode of operation:

- The system is operating in two modes, transition is automatic on the FW level.
- **Counting mode**: individual neutron signals are counted
- **Current mode:** the rate of incoming neutrons is too high to able to distinguish between 2 individual neutron signals
 - Events pile up
 - Number of neutrons estimated through charge.

Typical neutron signal

- The characteristics depend on detector properties/settings (drift length, applied voltage/gain) - settings not finalized.
- Typical numbers:
 - 30-50ns rise time
 - 100-200ns signal length
 - Amplitude:
 - nBLM-S: ~ constant (~100mV)
 - nBLM-F: continuous (maximum value 500mV ADC saturation)
- Note: the nBLM signals are negative.

What do the neutron detection related blocks provide?

<u>Number of neutrons</u> reported after every MTW - N_{MTW}

- Is calculated as a sum of a pair of numbers, representing the counts inside MTW calculated by the two different methods.
- At the end of each MTW:
 - N_{MTW} is stored in the CB2 and
 - N_{MTW} is reset at the end of every MTW.
- Additional data stored in CB2:
 - Number of pos. ADC saturations
 - Number of neg. ADC saturations
 - Background counts
- EventInfo for each "interesting event"
 - The structure contains information about the event (Q, TOT, rise time, time stamp,...)
 - The structure is stored in the circular buffer CB1 and
 - Reset at the end of each "interesting event".

MTW (Monitoring Time Window):

- *Time window in which the neutron counts are measured/reported*
- *Currently set to 1us (250 samples).*

EUROPEAN SPALLATION SOURCE

EventInfo structure

- TOT event Time Over Threshold
- Q_TOT charge inside the TOT window
- peakValue amplitude (min signal inside TOT window)
- TOTstartTime
- peakTime
- peakValid true if condition on neutron amplitude for single neutron is met
- TOTvalid true if condition on TOT for single neutron is met
- pileUp true if pile up conditions are met
- MTWindx index of the MTW where event started
- isTruncated true if event 1. part of a split signal
- isPart2 true if event 2. part of a split signal

Basic idea (by T. Papaevangelou):

- Detect "interesting events"
 - Identify single neutrons
 - TOT within a certain range
 - Amplitude below a certain limit
 - Identify **pile-up** events
 - Amplitude below the same limit as for single neutron
 - TOT above the upper limit for single neutron

- Use either of 2 methods for neutron counting for each neutron event:
 - Single neutron counting method
 - for single neutron events: count events
 - <u>Charge method</u>:
 - for pile-up events: calculate counts from charge

nBLM data processing (by ESS):

- Basic idea applied to real time processing and MTW framing of counts/events.
- <u>Requirement:</u> algo must provide information (neutron counts) without unnecessary delays.
- Both nBLM-F and -S have the same neutron algo running (different settings)

EUROPEAN SPALLATION SOURCE

Back up material

ESS Beam Loss diagnostic tools

- Total beam loss, microsecond measurement latency required for protection
 - BCM, icBLM (saturation, nBLM (current mode) → Interlock; Threshold/derivative term for fast protection
- > 1.6 milliamp lost for up to 200 μs
 - BCM, icBLM, nBLM -> Interlock; Damage model for protection
- ~ μC lost over 200 μs to many seconds (diffusion time)
 - icBLM, nBLM -> Interlock; Damage model for protection
- ~ "1 Watt/meter" radiation dose management
 - icBLM, nBLM -> alarm based on dose/activation plan

EUROPEAN SPALLATION SOURCE

Example:

- 220MeV protons
- Hit at: 1st insertion in Spk cavity
- Theta=1mrad
- Pencil beam

<u>Plots:</u> hits at r=752mm from beam axis

 Neutron and photon energy along the beam line

EUROPEAN SPALLATION SOURCE

Example:

- 220 MeV protons
- Hit at: 1st insertion in 1st Spk cavity
- Theta=1mrad
- 3x3mm² beam

<u>Plots:</u> hits at r=752mm from beam axis

 Neutron and photon energy along the beam line

ESS BLM: detector layout (MEBT-MB)

EUROPEAN

SPALLATION

SOURCE

ESS BLM: detector layout (HB - end)

ESS BLM: Response time

- Required response time set in the past:
 - NC linac (MEBT-DTL): \sim 5 µs.
 - SC linac: ~10 μs.
 - Numbers based on a simplified melting time calculations, where a block of material (copper or stainless steel) is hit by a beam of protons with a uniform profile under perpendicular incidence angle, no cooling considered [9].
- Numbers re-checked with a Gaussian beam and update beam parameters:
 MEBT DTL
 - NC linac: calculated melting time values of 3-4µs imply even stronger demands on the response time (confirmed with a MC simulation as well).
 - SC linac: the 10µs requirement for response time fits well with the results of this calculations.

However: other damage mechanisms ma mandate even shorter response time SCL (discussed further).

EUROPEAN SPALLATION SOURCE

icBLM

icBLM: collaboration

EUROPEAN SPALLATION SOURCE

LUT DMCS (ICS IK)

- FPGA FW design and implementation
- SW design and implementation

ESS BD

- System architecture, for example
 - Detectors & electronics
 - Detector and electronics layout
 - Mechanical support
 - Development of specifications and requirements
 - Spec. relevant for detector design
 - Def. of FW and SW functionality
 - Def. of data processing (FPGA algos)
 - Definition of monitoring variables and algos
 - Beam loss simulations: MC simulation of lost protons
- Installation
- System commissioning
- Coordination & project management

ESS ICS

• FW and SW support and integration

icBLM: collaboration

EUROPEAN SPALLATION SOURCE

LUT DMCS (ICS IK)

- W. Cichalewski (proj. management)
- G. Jablonski (FW, SW)
- R. Kielbik (FW)
- W. Jalmuzna (FW)

EUROPEAN SPALLATION SOURCE

ESS BD

- T. Shea (section leader, interim BLM system lead)
- I. Dolenc Kittelmann (BLM system lead)
- K. Rosengren (FW, DOD)
- H. Kocevar (SW)
- J. Norin (bookkeeping: det. & el. Layout, naming)
- S. Grishin (installation, gas system)
- C. Derrez (verification plan, QA, electronics)
- E. Bergman (cables, connectors, PPs)
- T. Grandsaert (mech. integration, mech. support)

ESS ICS

- S. Farina
- F. dos Santos Alves
- (W. Fabianowski)

icBLM: overview

Detectors

- Parallel plate gas Ionisation Chambers (ICs) developed for the LHC BLM.
- Beam loss information based on ionisation current measurement of secondaries

BEE

- IOxOS IFC1410
- Pico 4 FMC digitizer (CAENels)
 - Modified COTS
 - 1MS/s, 20-bit ADC, 300kHz bandwidth
 - Dynamic range:
 - 0 500μA,
 - 0 10mA

HV PS

- Provides:
 - Power the ICs (1.5kV) several ICs are daisy changed and connected to one HV ch
- Modulation voltage for system HEALTH check.
- HV module (1ch):
 - ISEG DPr 40 305 24 5_CAB High Precision HV-PS
- Ethercat crate with
 - ethercat coupler,
 - DIO (for PS config.) and
 - Analogue module (to modulate)
 - with real time kernel on the CPU.

icBLM: detectors (1)

icBLM

- Parallel plate gas Ionisation Chambers (Ics) developed for the LHC BLM system will be used
- Primary BLMs in SCL
- Beam loss information based on ionisation current measurement of secondaries.

EUROPEAN SPALLATION

SOURCE

icBLM: detectors (2)

icBLM

- "cut off" at transversal photon and electron incidence ~2MeV (~30MeV for p and n) [1].
- Photon background due to the RF cavities
 - Bckg. mainly due to el. field Emission from cavity walls, resulting in bremsstrahlung photons created on cavity/beam pipe material [3].
 - Levels are difficult to predict numerically – depend on the quality of cavities, operation conditions and time.
 - -Energy spectra estimation [4]: photons with energies up to tens of MeV in the high energy parts expected.

Background photons due to RF

Photon background due to the RF cavities mainled due to field emission from electrons from cavity[®]/_e
 walls, resulting in bremsstrahlung photons created in the field of nuclei of cavity/beam pip materials [3].

- Energy spectra estimations show that photons up to few tens of MeV can be expected [4]:
 - A MC code (FLUKA) was used for these estimations where a pencil electron beam is impacting a 4mm niobium foil.
 - Purple curves on the plot on the left show expected energy spectra for the photons produced at the exit of the foil:
 - Solid line for the monochromatic beam of electrons with energy of 25MeV
 - Dotted line for the beam of electrons with uniform energy distribution from 0 to 25MeV.
 - Spectra are normalized per number of primaries.
 - Note: maximum acc. Gradient expected at ESS ~25MeV/m, cavity size ~1m.

EUROPEAN SPALLATION

SOURCE

icBLM: electronics layout

2 groups of detectors

- To limit the situations with larger parts of the system un-operational
- Signal electronics for each group placed in separate racks
 - Group1: Odd detectors
 - Group2: Even detectors

36

EUROPEAN SPALLATION

SOURCE

icBLM electronics layout

EUROPEAN SPALLATION SOURCE

Estimated signal cable length

- Most detectors: 40 70m
- < 110m</p>

ICBLM signal cable

icBLM electronics layout

HV connections

- Same separation scheme as for signal connections
- A set of odd/even detectors (5-7)
 - Connected a given AMC in Group1/Group2 rack X
 - Powered by a HV PS (HV ch) located in rack X

EUROPEAN SPALLATION

SOURCE

icBLM electronics layout

HV connections

- Same separation scheme as for signal connections
- A set of odd/even detectors (5-7)
 - Connected a given AMC in Group1/Group2 rack X
 - Powered by a HV PS (HV ch) located in rack X

Detector		_	Det. group	#Proc.	Detector		
group	Rack	#Detectors	type	cards	distribution		
ICBLM-01	SPK-010ROW	7	odd (green)	1	{7}		
ICBLM-02	SPK-030ROW	20	even (red)	3	{7+7+6}		
ICBLM-03	SPK-050ROW	26	odd (green)	4	{7+6},{7+6}		
					(or {6+5+5+5+5+5})		
ICBLM-04	MBL-020ROW	20	even (red)	3	{7+7+6}		
ICBLM-05	MBL-050ROW	16	odd (green)	3	{6+5+5}		
ICBLM-06	MBL-090ROW	16	even (red)	3	{6+5+5}		
ICBLM-07	HBL-050ROW	16	odd (green)	3	{6+5+5}		
ICBLM-08	HBL-090ROW	16	even (red)	3	{6+5+5}		
ICBLM-09	HBL-120ROW	16	odd (green)	3	{6+5+5}		
ICBLM-10	HBL-160ROW	19	even (red)	3	{7+6+6}		
ICBLM-11	HBL-200ROW	15	odd (green)	3	{5+5+5}		
ICBLM-12	HEBT-010ROW	14	even (red)	2	{7+7}		
ICBLM-13	HEBT-030ROW	21	odd (green)	3	{7+7+7}		
					(or {6+5+5+5})		
ICBLM-14	HEBT-030ROW	12	even (red)	2	{6+6}		
ICBLM-15	A2T-010ROW	16	odd (green)	3	{6+5+5}		
ICBLM-16	A2T-010ROW	16	even (red)	3	{6+5+5}		
Σ		266		45			

EUROPEAN SPALLATION

SOURCE

EUROPEAN SPALLATION SOURCE

nBLM

44

nBLM: collaboration

EUROPEAN SPALLATION SOURCE

CEA DEDIP (BD IK)

- T. Papaevangelou (local coordinator)
- L. Segui (detector)
- P. Legou (FEE)
- S. Aune (gas system)
- D. Desforge (mechanical support)

CEA DIS (ICS IK)

- F. Gougnaud (local coordinator)
- Y. Mariette (EPICS)
- V. Nadot (EPICS)
- Q. Bertand (PLC)

LUT DMCS (ICS IK)

- W. Cichalewski (proj. management)
- G. Jablonski (FW, SW)
- R. Kielbik (FW)
- W. Jalmuzna (FW)

ESS BD

- T. Shea (BD section leader, interim system BLM lead)
- I. Dolenc Kittelmann (BLM system lead)
- K. Rosengren (FW, DOD)
- H. Kocevar (SW)
- J. Norin (bookkeeping: det. & el. Layout, naming
- S. Grishin (installation, gas system)
- C. Derrez (verification plan, QA)
- E. Bergman (cables, connectors, PPs)
- T. Grandsaert (mechanical integration)

ESS ICS

- S. Farina
- F. dos Santos Alves
- (W. Fabianowski)

nBLM project: time line

EUROPEAN

nBLM: Detectors (1)

nBLM detectors:

- 2 types,
- depending on location placed separately or back-to-back (detector unit)
- 1st module (slow losses): nBLM-S
 - Capable of monitoring low fluxes (~few n cm⁻²s⁻¹).
 - Response time: ~200µs (~10% events detected in 4µs).
 - Polyethylene (~4cm): moderator to thermalize the incoming fast n.
 - B_4C layer (deposited on the Al surrounding the gas chamber) to capture thermalized n – (n, α) ¹⁰B reaction (α with fixed energy of 1.4MeV).
 - Borated rubber to eliminate background thermal *n*.
 - Efficiency: few 10^{-2} (1eV < E_n < few 10MeV)
 - Solid angle: 4п

Micromegas detctor

nBLM: Detectors (2)

nBLM detectors:

- 2nd module (fast losses): nBLM-F
 - appropriate for high fluxes of fast *n*, coming from the front (~few 0.01 *n* cm⁻²s⁻¹).
 - Polypropylene (deposited on Al foil at the entrance window) for n conversion to *p* recoils (~ few mm) through *n* elastic scattering on H atoms (continuous distribution of recoiled *p* energies).
 - Cross-section threshold: $E_n \sim 0.5 \text{MeV}$.
 - Efficiency: 10-100 times lower than for nBLM-S $(10^{-5}-10^{-3} \text{ for } En = \sim 0.5 \text{MeV} 10 \text{MeV})$
 - Solid angle: 2п
 - Response time: ~10ns

- Al chamber
 - He (90%), CO_2 gas
 - Plastic deposited on Al (mylar, polypropylene)
- Micromegas detctor

nBLM: Signals

- Typical neutron signal:
 - 30-50ns rise time
 - 100-200ns signal length
 - Amplitude
 - Constant for S
 - Continuous distribution for F
- nBLM originally planned to operate in counting mode
- MC simulations: up to GHz rates expected in case of complete loss.
- Minimum response time for the system to drop the BEAM_PRMIT: ~5µs
- If counts are monitored in 1µs time window: pile-up when ≥6 counts ("neutron events") ⇒ transition to current mode.
- The FPGA neutron detection algo. is foreseen to automatically transition to current mode (monitoring both TOT and Q).

	Rates							
	1% 1W/m	Complete beam loss (rate in 1 st µs)						
Slow	0.1 – 68 kHz	10MHz – 60 GHz						
Fast	1 – 4 00 Hz	2-700 MHz						

nBLM electronics layout: signal

- To limit the situations with larger parts of the system un-operational
- MEBT Spoke: signal electronics for each group placed in separate racks
 - Group1: Odd pairs of S & F detectors
 - Group1: Even pairs of S & F detectors
- MB A2T: Group3

EUROPEAN SPALLATION

SOURCE

50

nBLM electronics layout: signal

(255)

EUROPEAN SPALLATION SOURCE

Estimated signal cable lengths 40 – 90m

nBLM electronics layout: HV, LV

- Same crate for LV and HV PS
- 2 HV lines per detector
- Each LV channel used to power several detector modules
- 2 crates along the linac
 - Separation in HV and LV connections between group 1 and 2 not possible down to the rack level
 - A set of detector modules
 - connected to an AMC/FMC has FEE powered by the same LV channel
 - with signal connected to the same rack has all HV cables connected to the same HV module

EUROPEAN SPALLATION SOURCE

nBLM electronics layout

Rack	Detector count	AMC count	Crate count	Detectors per AMC	AMC tag	Spare cables per rack
EB-050ROW	24	4	2	(6+6),(6+6)	(1,3),(5,7)	2
SPK-010ROW	22	4	2	(6+6),(6+4)	(2,4),(6,8)	2
SPK-030ROW	14	3	1	(6+4+4)	(9,11,13)	2
SPK-050ROW	12	2	1	(6+6)	(10,12)	2
MBL-050ROW	2	1	1	(2)	(14)	4
HBL-090ROW	2	1	1	(2)	(15)	4
HEBT-030ROW	2	1	1	(2)	(16)	1
42T-010ROW	4	1	1	(4)	(17)	1
Sum	82	17	10			18

Table 3: Summary of the nBLM system signal connections. The column marked with "Detectors per AMC" indicates the number of detectors connected to a crate or AMC board. The parenthesis "()" and "+" sign are used to differentiate between the crates and AMCs respectively. The colours mark different detector groups as explained in the text and shown on figure

Rack I	Det.	Det.	LV card	LV card	Det. per LV	Spare cables	Rack	Det.	Det.	HV card	HV card	Det. per HV	Spare cables
	count	location	count	tag	card	per rack	Kack	coun	t location	count	tag	card	per rack
FEB-050ROW 74			1	LV1	6+6+6+6	2		74 N	MEBT-MB	1	HV1	24M+24D	
	74	MERT_MR	1	LV2	6+6+6+4					1	HV2	22M+22D	2M+2D
		1	LV3	6+4+4	2	TED 000ROW			1	HV3	14M+14D		
			1	IV4	6+6+2					1	HV4	12M+12D +2M +	2D
SPK-010ROW	0	/	0		0	2	SPK-010ROW	0	/	0	/	0	2M+2D
SPK-020POW/	0	,	0	/	0	2	SPK-030ROW	0	/	0	/	0	2M+2D
SPK-050ROW	0	1	0	/	0	2	SPK-050ROW	0	/	0	/	0	2M+2D
SPK-050ROW	0	/	0	/	0	2	MBL-050ROW	0	/	0	/	0	4M+4D
MBL-050ROW	0	/	0	/	0	4	HBL-090ROW	0	/	0	/	0	4M+4D
HBL-090ROW	0	/	0	/	0	4			,		,	2M+2D+2M+2[)
HEBT-030ROW	8	>MB	1	HV5	2+2+4	1	HEBT-030ROW	8	>MB	1	HV5	+4M+4D	1M+1D
A2T-010ROW	0		0		0	1	A2T-010ROW	0		0		0	1

Table 5: Summary of the nBLM LV connections. The column marked with "Det. per LV card" indicates the number of detectors connected to each LV card. The "+" sign is used to differentiate between the channels on a certain LV card. The colours mark different detector groups as discussed in the text and shown on figure 6

Table 4: Summary of the nBLM system HV connections. The column marked as "Det. per HV card" indicates the number of detectors powered by each HV card. Note that each a detector needs two HV connections, one for meash (M) and one for drift (D). The colours mark different detector groups as discussed in the text and shown on figure 6.

"Interesting Event"

- Basic rule:
 - Starts when signal falls below start event threshold.
 - Ends when signal exceeds the end event threshold.
- Exceptions when signal extends over MTW edge
 - Split signal in 2 events if:
 - At the MTW edge the signal already qualifies as a single neutron.
 - Event too long (longer max TOT for a single neutron)
 - Otherwise end the event when signal exceeds end event threshold in the following MTW.

EUROPEAN SPALLATION

SOURCE

EUROPEAN SPALLATION SOURCE

"Interesting Event" types

- Single neutron
- Neutron pile up
- Background (gamma or other)
- Spike/noise, spark

EUROPEAN SPALLATION SOURCE

Neutron identification

- Single neutron
 - TOT: within limits
 - Amplitude: below the threshold
- Pile up neutrons
 - TOT larger than for single neutron
 - Amplitude: below the threshold

Background identification

- Valuable for
 - Comparison with icBLM data and/or
 - Corsscheck that algo or detector settings are ok
- Initial version:
 - TOT above the limit for single neutron
 - Amplitude above single neutron limit

 $\texttt{pileUpTOT_start} > \texttt{TOT}_j \geq \texttt{neutronTOT_min}$

 $peakValue_j \leq neutronAmpl_min$

 $TOT_j \ge pileUpTOT_start$

 $\texttt{peakValue}_j \leq \texttt{neutronAmpl_min}$

 $ext{TOT}_j \geq ext{neutronTOT}_ ext{min}$

 $\texttt{peakValue}_j > \texttt{neutronAmpl_min}$

EUROPEAN SPALLATION SOURCE

Neutron Counts per MTW:

EUROPEAN SPALLATION SOURCE

Neutron detection related blocks

- "Event Detection"
 - Detects start of an "interesting event"
 - Updates EvenInfo every 4ns
- "Neutron counter"
 - Ends event and resets EventInfo
 - Sums and resets neutron counts at the end of each MTW

