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Removing the beams from LHC

Single beam dump
system in point 6

particle free abort gap Kicker
. . . of 3 Us magnets
Kicker activation Kicker constant angle
synchronized with strength A Beam dump

AN

‘block

particle free gap

Gap needs to be free
of particles (losses
during dump)

Time
Illustration of kicker risetime




LHC beam dumping system

PROTON PHYSICS: BEAM DUMP

i ’ " Ll

Septum magnets
deflect the
extracted beam
vertically

15 fast ‘kicker’
magnets deflect
the beam to the

outside

about 500 m

Ultra-high reliable quadrupoles
system !l

Beam 2




Energies at stake
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Protection functions

Beam Protection: Beam Energy > Beam Dump

100x energy of TEVATRON

0.000005% of beam lost into a magnet = quench
0.005% beam lost into magnet = damage

Failure in protection — complete loss of LHC is possible

Powering Protection: Magnet Energy > Emergency Discharge

10-20x energy per magnet of TEVATRON

magnet quenched = hours downtime
many magnets quenched = days downtime

magnet damaged = $1 million, months downtime
many magnets damaged = many millions, many months downtime (few spares)




Failures and their mitigation

Three classes of failures need to be considered

Ultra Fast failures (single beam passage during e.g.
beam transfer, injection,...): protection with passive
elements and absorbers

Fast failures (few LHC turns following UFOs, certain
fast powering failures,...): Protection with BLMs and
dedicated protection systems

‘Slow’ failures (powering failures, feedback, RF,..):
Protection through equipment monitoring, ...




Failure detection time @ LHC
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LHC collimators

View of a two
sided collimator

About 100 e £ ‘

collimators . | \

installed all around | Jl ; i . -

the LHC Beam spot :' 1 /(, |
ey . ,; |

Y
?’x ‘ \-—’.




Fast(est) equipment failure in LHC

ATLAS

« Separation dipoles D1
In IR1 and IRS: normal
conductlng 12 modules —féf —
powered in series Lo

« Bx>2000m

« power converter failure:
t

B(t)=B,-e -

« time constant for D1

r=C =253

Power Converter




Studies of Fast(est) LHC failures

NitMN, @ collimator

N(O/N, @ collimator

a1l

0001

le-04

le-05

le-06

T
@ TCS.A4R7
@ TCS.B4RT
@ TCS E4RT
@ TCP.C6LT

@ TCSBSLT
@ TCS.ASLT

ANIN,

0.1

0.01

0.001

le-04

le-05

le-06

0.1

0.001

le-04

le-05

le-06

Courtesy of V.Kain




FMCM schematics

ftalic = Option = | Manual control 797
= monitor connector Dol Bk ¥
N L | DA
@ = differential input 1 : .
HV- @ ) Min/Max- Post
Box memory * mortem [
A/D [~ f recorder
Magnet || DCCT @ | |, Digital Signal ...........
current + HP*) Processing
*) HP= Highpass T 1
) Threshold = ~ i
rm-—
Com ) 1 cBU-
Beam Dump
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estimation filter recognize
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Courtesy of M.Werner/DESY




LHC beam loss monitors

lonization chambers to detect beam $oT T
losses: R R

Reaction time ~ %% turn (40us) 0211 ‘ %%% _

Very large dynamic range (>106) aif{,,Id;ubf”615”62,”6%”6;5,,65,5”,(3210.5

time (s)

~3600 chambers distributed over ring
to detect abnormal losses and if
necessary trigger beam abort

© Seaor1-2 + °  Secwor2-3 Sector 3-4  ©  Seaor4-5  °  Sector5-6  Secor6-7 . Sector 7-8  +  Sector 8-1

Monitors




LHC Machine Protection Architecture

Powering Protection Control System

%+ T
Original ~L
Specification Discharge Circuits<—

(2000) nQPS / Quench Protection System¢—> Radio Frequency System—>
Power Converters<—> Power Essential Controllers—

Current . Interlock »
Specification Cryogenics—> | controllers Auxiliary Controllers—>
General Emergency Stop<—> Warm Magnets—
Uninterruptible Suppliesé— Beam Television—
Control Room—>

Beam Protectjon
Collimation System—
y: . ) Experiments— Beam
- Early ‘separation’ of complex + slower ea
Vacuum System—>| Interlock [ ¢-Beam Interlock System —>| Beam
Access System—> System A System—> Pumping
. . ccess System System
powering interlock system . .
Beam Position Monitor—>
Beam Lifetime Monitor—> Timing

* Inputs from many equipment systems to - Post Mortem—>

System

ast Magnet Current Changes—>

Bgam Loss Monitors (Aperture)—

preventively dump beams

b Beam Loss Monitors (Arc)—>

Software Interlock System—>

* In total many 10.000 interlock conditions 1 njection Systems<>

[

* Execution of beam dump in < 300 us

Safe Machine Parameters




Beam Interlock System

Generic for all of CERN'’s beam related machine protection...

LHC Ring, SPS Ring, SPS Extraction, LHC Injection, Linac 4, Booster...

transmit beam abort request from user systems to beam dump:

D n LHC
N H > —>/ Beam Dump
\ System
“'\/J >200

fast esafe ereliable savailable «flexible

200us over 27km equivalent SIL3 <1% downtime




Beam Interlock System

Example for Beam 2

» Beam-2 Permit B
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Beam Interlock System

Tailor made design which took ~ 10 man-years to engineer




Beam Interlock System

User Interface




Beam Interlock System

fault / dangerous
situation occurs

\/ DETECT / COMMUNICATE \S\'NCHRONISE/ ABORT /

3 90 us

0 >40 us

Beam Interlock
System informed of
fault condition

Beam Dumping
System informed of
fault condition

Beam Abort
begins, aligned
with abort gap

Beam Abort
completed
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How to predict reliability...

...for a ‘non-complex’ system ?




FMECA

Failure Modes, Effects and Criticality Analysis

In what way can the system fail?...

...and what happens because of that?...

...and just how much of a problem does this cause?
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FMECA cycle

FMECA starts at the Component Level of a system

Break a large system into blocks, defining smaller, manageable sub-systems

get subsystem schematics, component list, and understand what it does
MIL-HDBK-338 MIL-HDBK-217

get MTBF of each component on the list, derive P, (mission)

MIL-HDBK-338 FMD-97

derive failure modes and failure mode ratios for each component

explain the effect of each failure mode on both the subsystem and system

determine the probability of each failure mode happening. Draw conclusions.




Dependability vs. Configuration

for all parts combined P(fail) =

= ilabilit
false dump: 9.6 x 10 per hour availability
= 4 missions per year aborted due to BIS

failure

= safety
= better than SIL3

blind failure: 3.7 x 109 per hour




Areas Outside FMECA Scope

Qualitative Bathtub Curve

1.2 +
Stress screening
1 RuUnin Maintenance T
! : Plan
DUTTI 1T —-=—

0
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<
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= Radiation?!
=
0. 1
" '\r& considered by FMECA X
0 |
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Our experience...

<1k lines for a non-complex system... Software / programmable logic...

FMECA = lots of work = pessimistic
Manufacturer predicted MTBF witchcraft it seems...

Failure rate too low to validate FMECA - wear out will begin
Typical failures of BIS do not stop operation

Lose availability with multiple failures (Murphy’s Law)

e.g. installation not quite correct AND
User system not exactly as expected AND
Software not configured correctly AND
Something simple fails =

Difficult to diagnose but Easy to fix

System does as specified, but the specification wasn’t complete

It does what we expected, but we didn’t quite expect that




What to do for complex systems?

<lklines for a non-complex system... with many components...
Beam Interlock System

FMECA

>80k lines for a complex system ... with few components ...

Review...

Safe Machine Parameters Test. ..
More likely to be systematic.. Observe...
Random failures insignificant... Repeat...

= formalisation ...

>>1k lines for a complex system ... with many components ...
Function Generator Controller Lite

FMECA + Formalisation + Safety Life-cycle?




Fast interlocks for different
architectures of accelerators...




Beam Interlock System LHC + SPS




Beam Interlock System + Inj
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Beam Interlocks for LINAC 4

« For SPS extraction / LHC injection and LINAC 4

protection, BIC systems are daisy-chained

*in LINAC 4:
*One interlock master for RF High-voltage
*Second master to interlock pre-chopper
and chopper as a function of following
LINAC state (fast interlock during pulse
possible)
*(fast) controllers to summarize interlocks
from different beam lines -> For reasons of
flexibility, 1/Os and speed PLC might have

been better option




Conclusions

Fast interlocks systems mostly tailored designs, requiring
substantial development + maintenance efforts
only justified in case of (very) specific needs?!

Very good record of operation with e.g. beam interlock, BLM, FMCM
systems,... so far

PLC solutions offer very mature & flexible technical solutions,
compliance with many industrial standards and development/
testing tools that considerably facilitating design process

Excellent operational record (experience limited to single vendor)

Separation of slow/fast controls proven very useful, certainly would
have no doubt to make same PLC choice for slow controls
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LHC collimators

Machine elements (especially ‘cold’ elements like magnets, cavities,
...) heed to be protected from impacts of high energy particles

Primary Secondary Shower Tertiary SC

Cold aperture collimator collimators absorbers cdllimators ~ Triplet

Tertiafly beam halo
+ hadronic showers
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Pro’s and Con’s of

>=1ms (some 10us with Fast Reaction Time LS
modules)
SIL 3 equivalent possible Dependability FMECA
Few I/O modules qualified for ~ Radiation Requires design effort and
100 Gy, avoid for CPU radiation testing
Level 4 of IEC 61000 EMC Design effort
Many tools and solutions Development effort >>

available, profiting from > market

Testing




Beam dumps from 4 TeV in 2012

Beam: Orbit h 1
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Nomarks or damage
on magnet flanges

‘—
Vacuum chamber cut \’,o
(outside view)

Ejected material opposite cut
(inside view)

markus.zerlauth@cern.ch RAMS in Science — Reliability work in LHC 40



Integrated Luminosity

CMS Integrated Luminosity, pp
Data included from 2010-03-30 11:21 to 2012 12-15 22 00 UTC
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LHC Performance end 2012

77% of design luminosity:
- 4/7 design energy

- nominal bunch intensity++
- ~70% nominal emittance

- beta®™ = 0.6 m (design 0.55 m)
- half nominal number of bunches

Max. luminosity in one fill
Max. luminosity delivered in 7 days
Longest time in stable beams (2012)

Longest time in stable beams for 7
days

Fastest turnaround

237 pb-'

1350 pb-'

22.8 hours

91.8 hours (55%)

2 hours 7 minutes




LHC cycle — Losses before
collisions
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LHC cycle — Losses when starting
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LHC cycle — Losses after bringing into
collisions
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What do the experiments want?
High Energy

B = Magnetic field

p = Radius
p = Momentum
e = Charge

Total Integrated Luminosity (fb ')
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CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:21 to 2012-12-15 22:00 UTC

N = Number of particle
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frev = Revolution Frequency
Oxy = Beam size

F = Geometric Factor
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Peak luminosity evolution during 2012

Peak Luminosity per Fill [10 * cm2 s-1
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The LHC story so far...

« 1994 -1 2002 -4 2005 -1 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 »
A\
I e > - Imtl |y -|< 35 > aTev |[[ Upgrade ||< v >
magnets Repair : pgrade >6.5Te
eV '
AN A /T\
LHC project September 10t / June 28th July 4th
approved first circulating beam 1380 Higgs
bunches discovery
\| November
lons
March 30t
September 18" N Fwst;oslllilcz/ns
first lesson learned at3.5Te

\| November 20t
second startup




LHC magnets + protection

19km of ring composed of 1232
superconducting dipoles
magnets, 8.3T (7TeV), 15m, 1.9K

392 superconducting quadrupole
magnets (focusing of beams)

8000 higher order corrector
magnets for steering,
corrections,...

Sophisticated Quench protection
system

Presentation of A.Siemko




RF cavities

A voltage generator induces an electnic fiedd | Protons alwoys
ingide the RF cavily. s voltage oscllates ;Mnmh!u
with & radio frecuency of 400 MHz | forword direction

i
e N
o R Z :
| \' - o G RF voltage
AE & : :
s S " ;
<’ ',/—3,' \‘>—’“:‘“" » . Eight single‘cell’cavitieg / beam
Wi ",,/’/ = A\ Eac%ering up to ZMV att400 MHz
- Niobiutn‘on copper t¢chnologyat 4.5K

For acceleration particles have to be in right phase with RF voltage
- LHC can only accelerate particle ‘bunches’




Operatlon CERN Control Centre
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Yearly schedule

Jan Fab T o Mar e
* Operation crews in CCC on 24/7 basis I e T e e R A
* Typical operational year includes e ———
* Technical stop over Christmas A S S—
* Hardware commissioning = ., o : @ -
* Cold checkout / beam .
commissioning )
* Production runs N E - i o e e
» Special Physic runs (high beta, - =i
VdM scans, ...) =
* Machine Developments o T I
: o | - u:-x =
= = f':-,_l:]ﬁ




LHC cycle
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LHC cycle — Preparing for injection

Machine to injection energy (450GeV)
Precycling of magnets

Preparation/verification of equipment systems (RF, Bl,
Cryo, Access...)

Preparation of beams in injector complex

Injection Level

Main Dipole
|

T — i

Corrector circuits




LHC cycle — Injection of beams
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LHC cycle — Injection of beams

tween 2012-06-01 11:08:32.333 and 2012-06-02 03:43:05.520 (LOCAL_TIME)

Inject beams, starting with very

small pilot beam e o
process

Then steps of 144/288b at 450 GeV

Verification of beam parameters

(position, dimensions, profiles,

: Energy
tune,...) rampt
Followed by energy ramp (Magnets i
+ RF in parallel) | 15 M ~130 M
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LHC cycle — Squeeze and Collide

Timeseries Chart between 2012-06-01 11:08:32.333 and 2012-06-02 03:43:05.520 (LOCAL_TIME)

.B1:BEAM_INTENSITY C.BCTDC.AGR4.B2:BEAM_INTENSITY

Injection
process

at 450 GeV
Squeezing beta
functions from
Ener
gz 11m to 0.6m Bringing
ramp to (IP1 and IP5) beams
4 TeV i
into
collisions




LHC cycle — Stable Beams

Timeseries Chart between 2011-10-08 05:17:16.586 and 2011-10-09 05:05:14.465 (LOCAL_TIME)
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LBDS and Trigger Synchronisation
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SPS, transfer line and LHC

Beam is accelerated
in SPS to 450 GeV
(stored energy of 3
MJ)

Beam is transferred
from SPS to LHC

Beam is accelerated
in LHC to 3.5 TeV
(stored energy of
>130 MJ)
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to LHC
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Large amount of energy stored in the beams

Injecting beams, performing the energy ramp and bringing the beams
into collisions .... without quenching or even damaging accelerator
and experlments

Dumping 130 MJ beam without quenching magnets
Detecting all failures that could lead to uncontrolled beam losses
Avoiding beam losses, in particular in the superconducting magnets

Magnet quench limits when 10-8-10-7 of beam hits
magnet at 7 TeV

Beam cleaning (Betatron and momentum cleaning) is
vital during operation

Collimator position depends on energy and on beta
function at collision point
Radiation, in particular in experimental areas from beam collisions

Single event upset in the tunnel electronics
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