

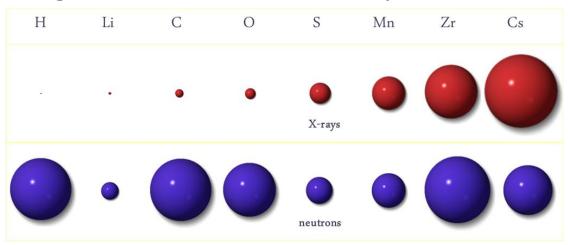
The European Spallation Source

Dave McGinnis

Chief Engineer – ESS\Accelerator

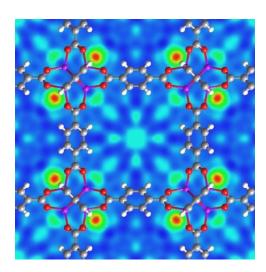
Division

Overview


- The European Spallation Source (ESS) will house the most powerful proton linac ever built.
 - The average beam power will be 5 MW which is five times greater than SNS.
 - The peak beam power will be 125 MW which is over seven times greater than SNS
- The linac will require over 150 individual high power RF sources
 - Based on high power electron tubes
 - with 80% of the RF power sources
 - requiring over 1.1 MW of peak RF power at a 4 % duty factor
 - We expect to spend over 200 M€ on the RF system alone

What is ESS?

- ESS is a neutron spallation source for neutron scattering measurements.
- Neutron scattering offers a complementary view of matter
 - in comparison to other probes such as x-rays from synchrotron light sources.
 - The scattering cross section of many elements can be much larger for neutrons than for photons.



Neutron Scattering

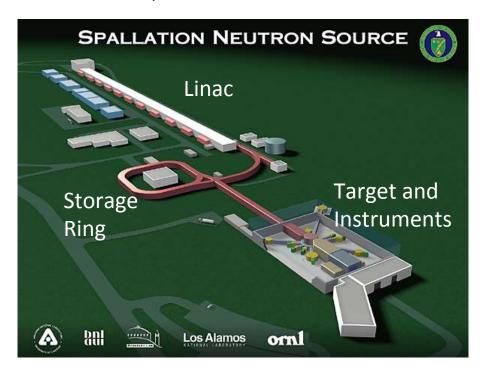
 Neutron scattering can reveal the molecular and magnetic structure and behavior of materials, such as:

 Structural biology and biotechnology, magnetism and superconductivity, chemical and engineering materials, nanotechnology, complex fluids, and others


Neutron scattering of hydrogen in a metal organic framework

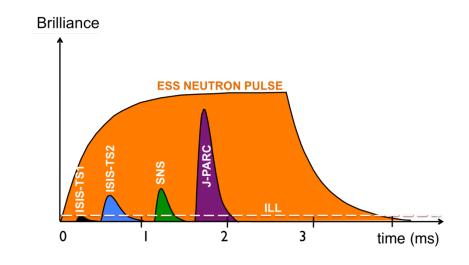
Neutron radiograph of a flower corsage

X-Ray Image


Neutron radiograph

Neutron Spallation Sources

- Traditional neutron sources are reactor based
 - Neutron flux is limited by reactor cooling
 - Neutron energy spectrum is measured by time of flight using neutron choppers
 - Chopping throws away neutrons and limits neutron brightness
- Spallation sources consist of a:
 - pulsed accelerator that shoots protons into:
 - a metal target to produce the neutrons
- The pulsed nature of the accelerator makes the neutron brightness
 - much higher for a spallation source
 - for the same average neutron flux as a reactor

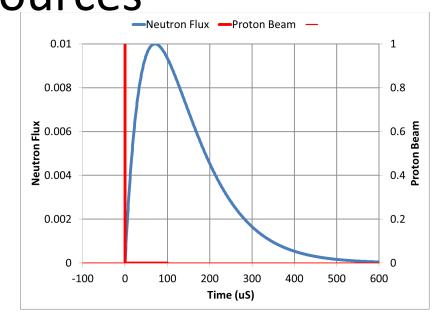

- The accelerator complex of atypical spallation sources consist of a:
 - Linac to accelerator the protons
 - A storage ring to compress the linac beam pulse

What is Different About ESS?

- The average proton beam power will be 5 MW
 - Average neutron flux is proportional to average beam power
 - 5 MW is five times greater than SNS beam power
- The total proton energy per pulse will be 360 kJ
 - Beam brightness (neutrons per pulse) is proportional to total proton energy per pulse
 - 360 kJ is over 20 times greater than SNS total proton energy per pulse

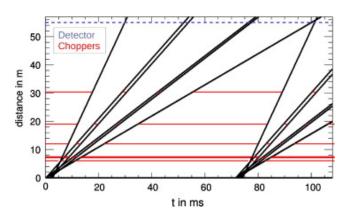
What is 5 MegaWatts?

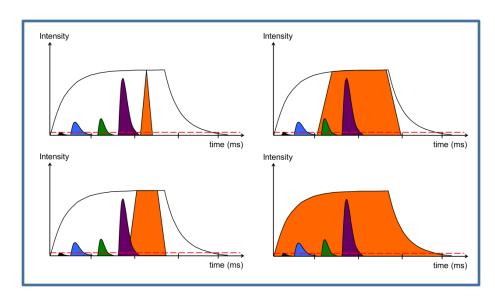
- At 5 MegaWatts,
 - one beam pulse
 - has the same energy as a 16 lb (7.2kg) shot traveling at
 - 1100 km/hour
 - Mach 0.93
 - Has the same energy as a 1000 kg car traveling at 96 km/hour
 - Happens 14 x per second
 - You boil 1000 kg of ice in 83 seconds
 - A ton of tea!!!

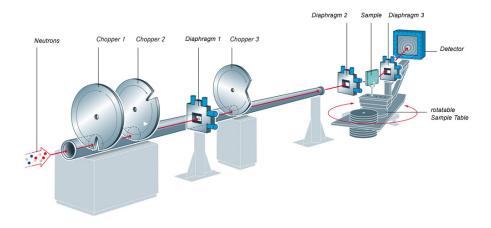


Short Pulse Neutron Spallation Sources

- The neutrons are cooled by a moderator downstream of the target
- The time constant of the moderation process is about 100 µs
- Proton beam pulses shorter than 100 us serve only to stress the metal target and limit the beam power
 - Typical short pulse spallation sources have storage ring circumferences ~300 meters which produce 1 μs beam pulses
 - To build a storage ring with a 100 μs pulse would require a ring 30 km in circumference

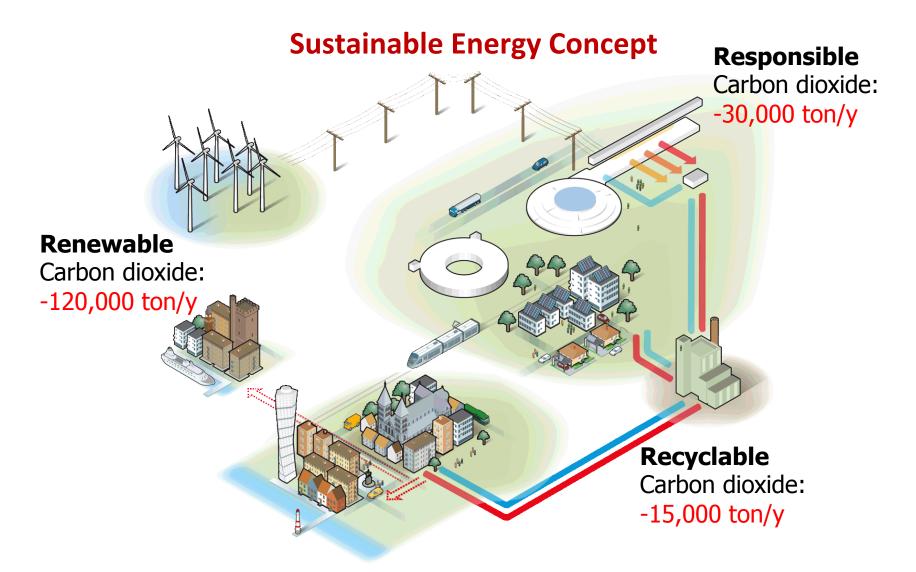


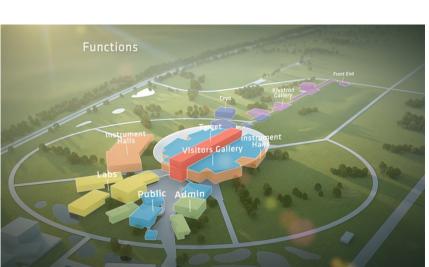

- The target stress from the short beam pulse places a limit on:
 - proton beam power
 - and ultimately neutron flux and brightness
 - The proton beam power of SNS (Oak Ridge Tennessee, USA) is limited to 1MW (17 MW peak)



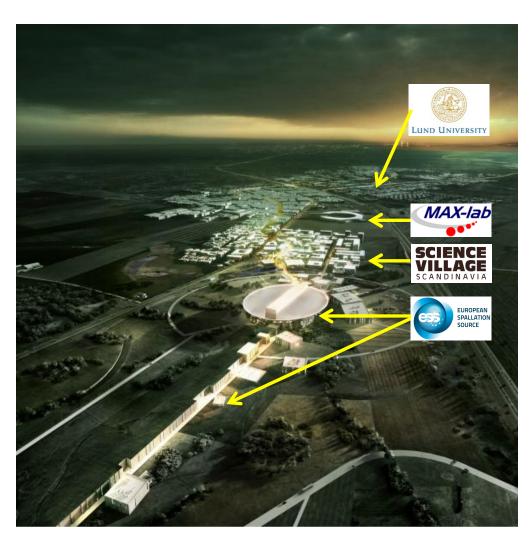
Long Pulse Concept

- 360 kJ packed into a short pulse of 1
 µs (360 GW peak) would destroy a
 target
- ESS will not use a compressor ring
 - The linac will send the beam directly to the target over a period of 3 ms at a rate of 14 Hz.
 - Peak beam power on the target is less than 125 MW
- The tradeoff is that ESS will
 - Have longer neutron guides between experiments and the target
 - Require a neutron choppers for precision energy measurements



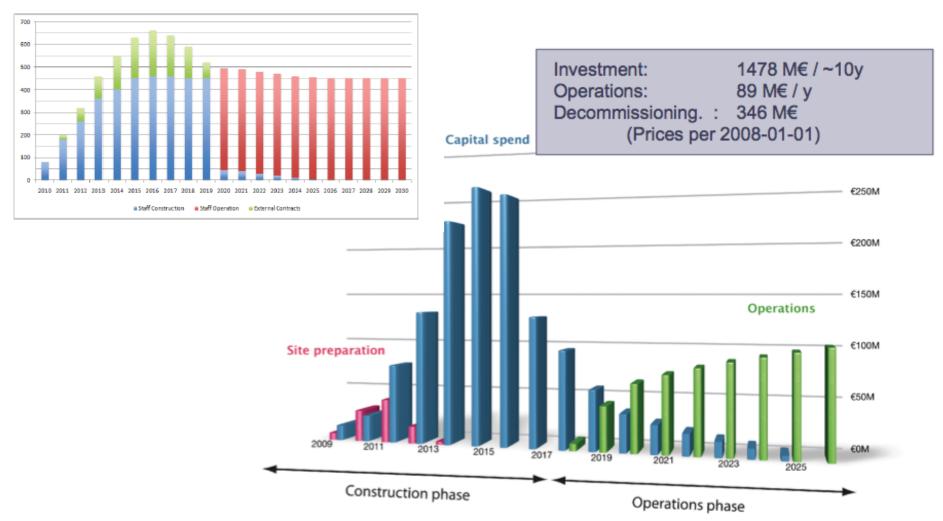

What is Different About ESS?

What Will ESS Look Like?



Where Will ESS Be Built?

- ESS is located in southern Sweden adjacent to MAX-IV (A 4th generation light source)
- To provide a world-class material research center for Europe

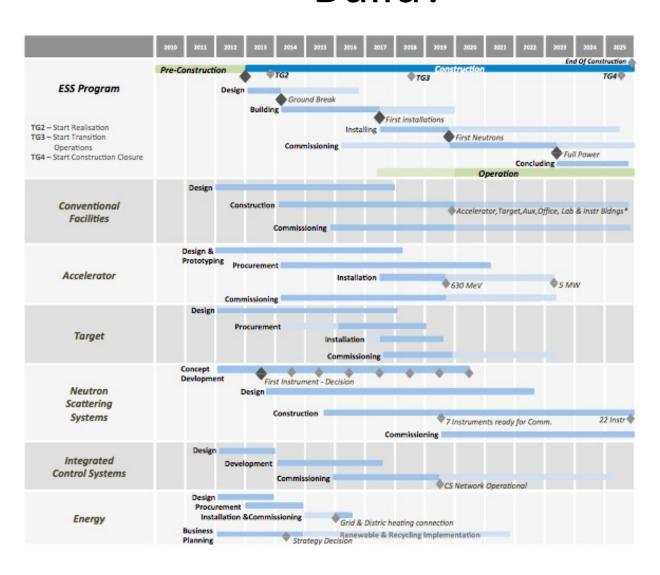


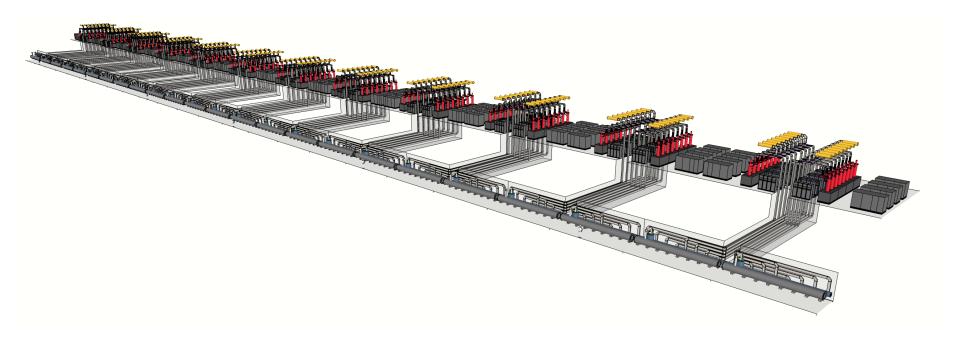
How Much Will ESS Cost?

Personnel Investment

How Will ESS be Funded?

Sweden, Denmark and Norway covers 50% of cost


The remaining ESS members states covers the rest!


with in-kind and cash contributions.

How Long Will ESS Take to Build?

ESS LINAC

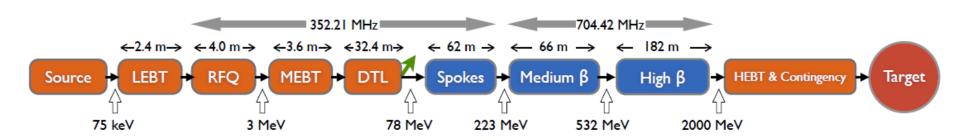
Top Level Requirements

- 5 MW of average beam power
- Pulse repetition rate of 14 Hz
 - driven by neutron chopper constraints
- Pulse length of 3 ms
 - Driven by instrument location
 - And beam brightness
- Gives:
 - Peak beam power of 125 MW
 - 4% duty factor

Redesign Phase

- ESS Accelerator is currently in a redesign phase to
 - reduce cost without reducing scope.
 - By adding more technical risk
- Major redesign changes
 - Energy Reduction: 2.5 GeV -> 2.0 GeV
 - Gradient increase by 10%
 - 33% fewer 704 MHz cryomodules and RF systems
 - Beam Current Increase: 50 mA -> 62.5 mA
- Design contingency
 - Instead of cost contingency
 - Keeping the length between Ion source and Target at the maximum possible distance
 - Add cryo-modules as contingency

Linac Design Choices

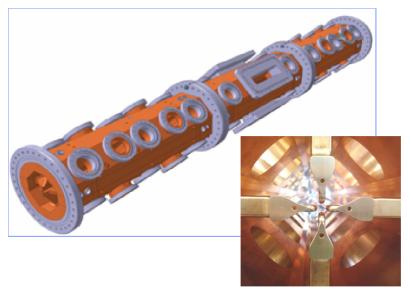

- The energy of the linac is a tradeoff of
 - Linac length
 - Beam current:
 - Space charge forces
 - Halo losses
- Copper Linac
 - Low construction costs but high operational costs
 - Small bore radius < 3 cm
 - Long linac > 750 meters for 2 GeV
- Superconducting Linac
 - High construction costs but low operational costs
 - Large bore radius > 7 cm
 - Short Linac < 360 meters for 2 GeV

Linac Design Choices

- User facilities demand high availability (>95%)
- ESS will limit the peak beam current below 65 mA
- Linac Energy > 2 GeV to accomplish 125 MW peak power.
- The linac will be mostly (>97%) superconducting
- Front end frequency is 352 MHz (CERN Standard)
- High energy section is at 704 MHz

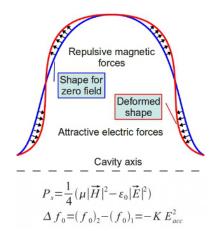
Accelerator Collaboration

- Ion source : Istituto Nazionale di Fisica Nucleare (INFN)
 Catania, Italy
- Radio Frequency Quadrupole (RFQ): Commissariat à l'énergie atomique (CEA) – Saclay, France
- Medium Energy Beam Transport (MEBT): ESS-Bilbao, Spain
- Drift tube Linac (DTL): Istituto Nazionale di Fisica Nucleare (INFN) – Legnaro, Italy
- Spoke cavities: Institut de Physique Nucléaire (CNRS) Orsay, France
- Elliptical cavities: Commissariat à l'énergie atomique (CEA) – Saclay, France
- High Energy Beam Transport: Aarhus University, Denmark
- Spoke RF sources: Uppsala University, Sweden
- RF regulation: Lund University, Sweden

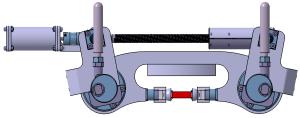


Front End Section

- The RFQ and DTL will be similar to the CERN Linac 4 design.
- The RFQ
 - will be 4.5 meters long
 - and reach an energy of 3.6 MeV
- The DTL
 - Will consist of five tanks
 - Each tank ~7.5 meters in length
 - Final energy will be 88 MeV
- Six klystrons
 - at 352 MHz
 - with a maximum saturated power of 2.8 MW
 - and a duty factor of 4% are required for the Front End

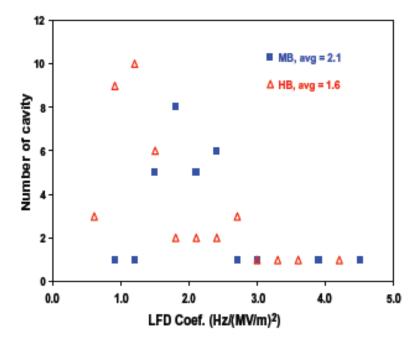

Superconducting RF

- Over 97% of the ESS linac will be superconducting cavities.
- Compared to copper cavities, superconducting cavities can offer:
 - over three times the gradient
 - over 10 times the aperture
 - with virtually no power dissipated in the cavities



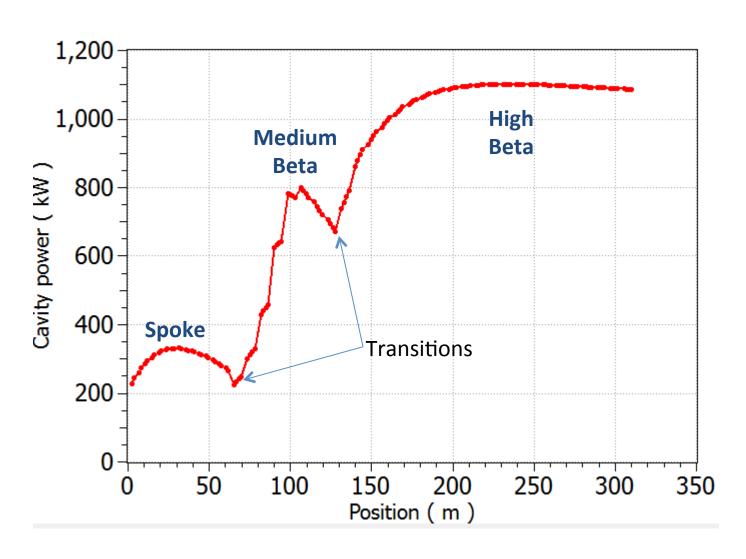
Lorentz De-tuning

- Because of the enormous gradients in superconducting cavities,
 - the radiation pressure deforms the cavities
- We expect over 400 Hz of detuning in the ESS cavities.
 - Unloaded cavity bandwidth = 0.07 Hz
 - Loaded cavity bandwidth = 1 kHz
- The mechanical time constant of the cavities is about 1 ms compared to the pulse length of 3 ms
 - Static pre-detuning as done in SNS will not be sufficient
 - Dynamic de-tuning compensation using piezo-electric tuners is a must!
 - Or else pay for the extra RF power required



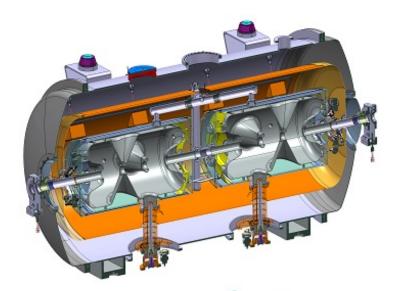
Cavity Power Configuration

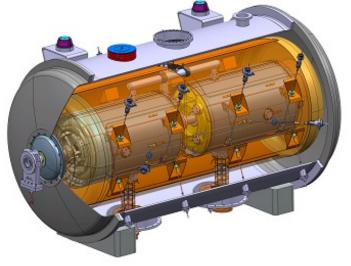
- Because of fabrication techniques,
 - superconducting cavity strings are usually much shorter (< 1 m) than copper cavity strings (> 5m).
 - The Lorentz de-tuning coefficient varies from cavity to cavity
- Therefore, each superconducting cavity has its own RF power source



Transit Time Factor

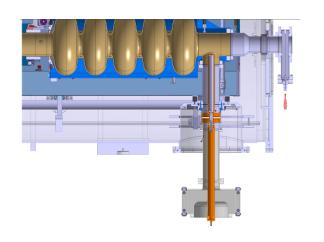
- For proton linacs using copper RF cavities
 - the cavity cell structure is tuned to match the changing proton velocity as it accelerates.
 - The power profile is usually flat
- Because of high fabrication costs and difficulty,
 - The cell structure of superconducting cavities is tuned for only one beam velocity.
 - Multiple families of cell velocities are chosen. ESS cell velocities:
 - Spoke: $\beta_g = 0.5$
 - Medium beta: $\beta_g = 0.67$
 - High beta: $\beta_g = 0.86$
 - There is a limit on the surface field in a SCRF cavity (ESS 45 MV/m)
 - Since, the particle velocity does not match the geometrical velocity for the entire acceleration range,
 - The power profile is not flat

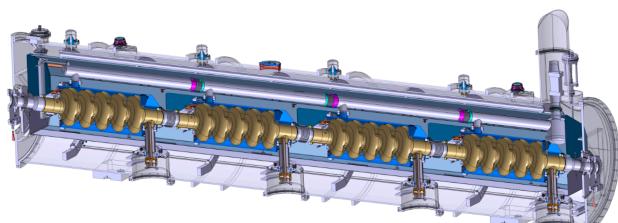

ESS Linac Cavity Power Profile



Spoke Cavities

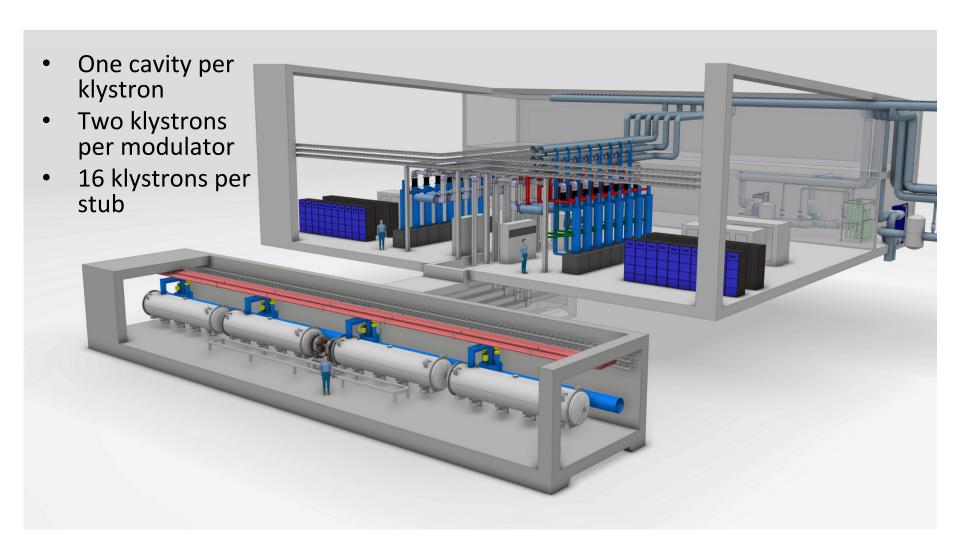
- ESS will transition to superconducting cavities at 88 MeV
- ESS will be the first accelerator to use 352 MHz double spoke cavity resonators
- Twenty-eight cavities with an accelerating gradient of 8 MV/m are required.
- Each cavity will operate at a nominal peak power of 320 kW
- What type of power source to choose?
 - Tetrode
 - Klystron
 - IOT
 - Solid State

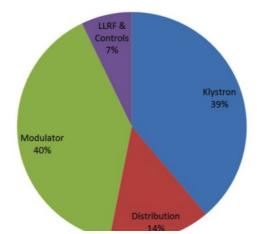


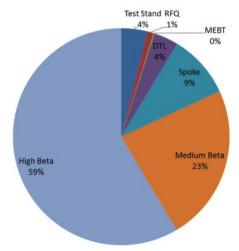


Elliptical Cavities

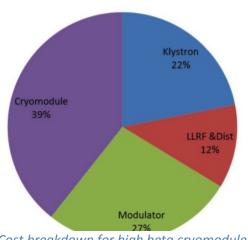
- Universal Cryomodule
 - Cryomodules are expensive and difficult to fabricate
 - Pick cavity β_g and number of cells
 - Optimize power transfer
 - Optimize length
 - Power in couplers is limited to 1200 MW (peak)


- Medium Beta $\beta_g = 0.67$
 - 6 cell cavities
 - Cavity length = 0.86 m
 - 32 cavities packaged in 8 cryomodules
 - Maximum peak RF power = 800kW
- High Beta $\beta_g = 0.86$
 - 5 cell cavities
 - Cavity length = 0.92 m
 - 88 cavities packaged in 22 cryomodules
 - Maximum peak RF power = 1100kW


Elliptical RF System Layout


Accelerator Physics 2% Spokes 4% Test Stand 2% Installation 3% RF 37% RF 37% Accelerator Physics 24 Spokes 4% Medium Beta 6% High Beta 13% Instrumentation 6%

ESS Cost Distribution as of October 2012



Cost breakdown for 704 MHz Elliptical RF systems

Cost Drivers

RF System Cost Distribution

Cost breakdown for high beta cryomodule system.

- Elliptical cryomodules occupy 19% of the cost
 - There are 45 elliptical cryomodules
- The cryogenic plant absorbs 14% of the total cost.
- RF systems comprise 37% of the cost.
 - The RF costs are distributed over five major systems
 - The elliptical section comprises 82% of the RF system cost.
- For the elliptical section,
 - the klystrons and modulators comprise 80% of the RF system cost.
 - 62% of the total cost of the linac.
 - 92% of the acceleration energy

31

Deliverables For the Redesign

- Lattice Design with Error Studies
- Level 1-4 requirements
- Cost Targets at Level 4
 - (Level 4 = Disciplines -> RFS, CRYO, PBI, etc.)
- Our goal is to deliver this by 1-October-2013

Timetable

- Level 1 and Level 2 requirements
 - Finalized by 15-August
- Level 3-4 requirements.
 - 15-August though 15-September
- 2nd iteration Cost Targets to Level 4.
 - 15-September through 1-October
- Work package re-Cost Estimate.
 - 1-October through 15-October
- Primavera Entry.
 - 15-October through 1-November
- Primavera Review.
 - 1-November through 10-November