Machine Protection System PETRA III

Timmy Lensch, DESY-MDI

PETRA III - Machine Protection System 29/08/2012

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

PETRA III

Facts and figures

- Ring accelerator for electrons and positrons
- Length: 2304 metres
- Commissioning: 1978
- 1978-1986: particle physics
- 1987-2007: pre-accelerator for HERA and X-ray radiation source
- Since 2009: most brilliant storage-ring-based X-ray source in the world
- Start of user operation: 2009
- 14 experimental stations with up to 30 instruments

http://www.desy.de

Specifications for the MPS

- Detect and transmit a dump trigger within 100 µs
- Flexible logical combination of alarm inputs
- Flexible individual beam current threshold for each alarm input
- Flexible minimum number of active alarms inputs
- Detect the alarm(s) which fullfilled the dump condition first (fast localisation of the cause)
- Post Mortem Trigger for triggering other systems (i.e. BPM)
 after an event (dump or beam loss)

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

MPS – An Overview

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

MPS - Integration in the PETRA Machine

- Distributed system
 - 10 crates in 9 PETRA halls
 - Each crate can have up to 112 alarms and is connected to the optical loop
- Redundant optical fibre between modules for transmission of
 - Beam current
 - Post Mortem trigger
 - Dump trigger
 - Synchronisation of modules
- Measure beam current with dedicated DCCT

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

Alarm Handling

How to get rid of the beam?

Switch off RF power for 5 ms

RF power is

beam dump April 27th 2010 19:02h

- Dumpmodule
- "Backup": beam stopper
 - slow, ca. 200ms
 - → this is also a beam inhibit mechanism!

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

Fast Interlock and Distribution with FPGA

- Rough specifications
- MPS An Overview
- MPS Integration in the PETRA Machine
- Alarm Handling and Dumping of the Beam
- Fast Interlock and Distribution with FPGA
- Summary

Summary

- distributed system, connected internally through optical link
- Dump trigger: decision 100ns, distribution in ~35µs, get rid of the beam
 ~400µs
- Fast reaction and high flexibility due to use of FPGAs (AND/OR Matrix, optical frame, ...)

We have also ...

- Analyzing beam losses with synchronous Post Mortem trigger
- Software based rule system helps operator to understand beam losses

END

Thank you for your attention.

MDI6

Matthias Werner Bastian Michalek Timmy Lensch

MCS (MPS Software)

Yuri Netchaev Victor Soloviev Marcus Walla Winfried Schütte

Hardware Developed for the MPS

Basis Digital Carrier Board

- Interface to the control system (SEDAC)
- Power converters, LEDs on the front, ...
- Usable with different piggy backs, core functionallity is defined in the FPGA firmware

MPS Alarm Module (MPSA)

- 16 differential inputs
- "inherits" from Basis Board
 - Interface to control system
 - Communication over backplane with controller module
- 25 modules are working in PETRA

Hardware Developed for the MPS

MPS Master Module (MPSM)

- "inherits" from Basis Board …
- Master of optical interface, frame repetition rate is 4µs
- Synchronisation of all MPSCs
- Beam current measurement
- 1 module in PETRA

MPS Controller Modul (MPSC)

- "inherits" from Basis Board …
- Optical interface to neighbour crates, can add information to optical frame (dump trigger)
- Post Mortem output
- Collects MPSA information from backplane
- 10 modules in PETRA (1/Crate)

MPS Dump Module (MPSD)

- Receives dump command and transmitts it redundand to the RF systems
- 1 module in PETRA

