

Test Benches for PLC Based Systems

Testing of Safety Functions

ESS - 29/30 August 2013

Authors: P. Ninin, F. Valentini

Edms: **1310209**

Outline

The return of experience of CERN in the development and validation of Safety Personnel Protection Systems showed us that the realization of a performing Test Platform is essential to ensure the quality of the Verification and Validation activities. However the adoption of a Formal Language for the specification of the Safety Functions in another essential Key.

- PS-PPS Project Scope
- Development Methodology / Normative Context
- Safety Test Bench Conception
- Safety Functions Formal Definition Language
- Major Advantages for Verification & Validation
- Conclusions

PS-PPS Project Scope

Development Methodology

1. Risk & Danger Analysis 2. Allocation of the safety function to the protection layer 3. Specification of the Safety Function and System 4. Design & Realisation 5. Installation, Commissionning, Validation 6. Operation & Maintenance 7. Modification

9. Verification and validation 10. Functional Safety Management

Development Methodology

Classic Architectural Model Example

FIRST STEP: Clear fixing of the Platform objectives!!

Safety

- 1 Validate Safety Software of each local controller.
- 2 Validate safety communication between local controllers (min. 3).

)peration

- 3 Validate all operational synoptics.
- 4 Integrate real access devices (PAD/MAD) within the simulated signals.

USABILITY

- **5** Quick reconfiguration of the Platform (max. 2h to load new PS sites).
- 6 Quick modification of Platform architecture (ADD/REMOVE access devices).
- 7 Be able to run automatic test case scenarios.

SIEMENS SIMBA Box

(SIMULATION CONSOLE)

FIS – Formal Definition Language

Main Objective:

Specify each FIS in a 3 sections structure

FIS CODE	SIL TARGET	OPERATING MODE	PROBABILITY	REDUNDANCY			
FIS_1	SIL3	CONTINUOUS	PFH	1002			
MITIGATED HAZARDS: Exposition to radiations coming from injected/circulating beam, activated materials or radiation coming from a source (LINAC4). Other risks covered are related to the exposition to X-Rays from RF cavities. SEPTA Electrostatic Magnets (PS RING							

Exposition Conditions: unintended start of the Beam. Intrusion during Beam operations.

SAFETY ACTIONS: Computation of REPLI Mode (NO ACCESS/NO BEAM) of the ZIV.

Activation of Evacuation Sirens.

Sending of protection requests to all Upstream ZIVs.

Computation of the Safe State signal (SECU_OK) for all Downstream ZIVs.

and BOOSTER), working KLISTRONS or Deflecting Cavities (CTF3-DL-CR).

GENERAL DESCRIPTION: The function main scope is to ensure that **NO Beam** is permitted when the Access mode is set and **NO Access** is granted when Beam is allowed in the ZIV. In case of loss of this invariant condition (ex. intrusion during beam mode or loss of the Safe state of at least 1 *EIS beam* during access) the function disables the current exploitation mode and activates the REPLI MODE (No Access – No Beam) described by the **FIS_17.**

During the REPLI MODE, the Function asks to all upstream ZIVs to put in SAFE state all their EIS_b if at least 1 EIS_b of the ZIV is in an UNSAFE position.

The Function starts the EVACUATION sirens if at least 2 EIS. b are in an UNSAFE position.

Additionally, this FIS computes continuously the signal SECU_OK sent to all downstream zones to inform that all the EIS-beams of the ZIV are SAFE.

Logic Solver Technology:	Safety PLC Wired System	Reaction Time:	2s	Spurious Trip Frequency:		< 1/year	
Failsafe Behavior:	Application of REPLI Mode for the ZIV.	By-pass needs:	FIS_2	?	Periodical Tests frequency:	1/year	

FIS Input / Output Interface

FIS – Formal Definition Language

Main Objective:

Specify each FIS in a 3 sections structure

3.1.1 FIS INPUT SIGNALS

VARIABLE	SIGNAL	SOURCE	PLC Type
EISa_Safe	Position (SAFE/UNSAFE) resultant for all EIS- access of the ZIV. Refer to the specific definition of SAFE/UNSAFE state given for the different models of EIS-A: EISa_Safe=0 → 1 EISa is UNSAFE	2 Mechanical switches	FDI
EISb_Pos	Position of all EIS-beam of the ZIV: EISb_Pos=1 → All EIS-beam are SAFE	2 Mechanical switches	FDI
KEY_Out	Position of all keys used to put out of chain the Downstream ZIVs. KEY_Out=1 → The ZIV is out of chain	2 Micro-switches	FDI
MODE_Bea	The Beam mode status of the ZIV: MODE_Bea=1 \rightarrow ZIV in BEAM ON	Network (OKC PLC)	INT VAR
MODE_Acc	The Access mode status for the ZIV: MODE_Acc=1 → ZIV in ACCESS ON	Network (OKC PLC)	INT VAR
MODE_Tra	Status of TRANSITION RFA/RFB Mode: MODE_Tra=1 → ZIV in RFA/RFB Mode	Network (OKC PLC)	INT VAR
MODE_TFA	Status of TRANSITION FROM ACCESS Mode: MODE_TFA=1 → ZIV in TFA mode	Program	INT VAR
ACCE_Tst	Status of the mode TEST EIS-b for the ZIV: ACCE_Ist=1 → TEST mode authorized	Program	INT VAR
ACCE_IfI	Status of the mode TFT for the ZIV: ACCE_IfT=1 → TFT Mode activated	Program	INT VAR
SECU_Dwa	Request from downstream ZIV for setting all EIS-b of the ZIV in a SAFE state: SECU_Dwn=0 → Safety requested	Cabled signal from downstream PLC	FDI
ZIV_Srch	Search state for the ZIV: ZIV_Srch=1 → ZIV Search is Armed	Program	INT VAR

3.1.2 FIS Output Signals

VARIABLE	SIGNAL	SOURCE	PLC Type
MODE_Rep	The REPLI mode status for the ZIV: MODE_Rep=1 → ZIV in REPLI Mode	PLC Program	INT VAR
EVAC_Cmd	Command to the BIW system to start the Evacuation sirens: EVAC_Cmd=1 → Evacuation activated	PLC output	FDO
SECU_Ok	Signal sent to all downstream ZONES to inform that all EIS beam of the ZIV are safe: SECU_Ok=1 → All EIS-beam are SAFE	PLC output	FDO
SECU_UP	Signal sent to all upstream Zones to ask them to put in SAFE state their EIS beam: SECU_Up=0 → Safety Request activated	PLC output	FDO

Description ormal

FIS – Formal Definition Language

Main Objective: | Specify each FIS in a 3 sections structure

TRIGGERING EVENT- ACTIVATION OF THE REPLI MODE FOR THE ZIV:

$$((\underbrace{MODE_Acc} = \mathbf{1} \lor MODE_TFA = \mathbf{1} \lor \underbrace{MODE_Tra} = \mathbf{1}) \land \underbrace{ACC_TSt} = \mathbf{0} \land \underbrace{ACC_TFT} = \mathbf{0} \land \underbrace{EISb_Pos} = \mathbf{0}) \lor (\underbrace{MODE_Acc} = \mathbf{0} \land \underbrace{EISa_Safe} = \mathbf{0})$$

OUTPUT \rightarrow MODE Rep = 1

TRIGGERING EVENT- ACTIVATION OF THE EVACUATION SIREN FOR THE ZIV:

```
((MODE Bea = 1 \lor MODE TFB = 1) \land ZIV Srch = 0) \lor
(MODE Rep. = 1 \land EISb Pos\{>1\} = 0 \land EISa Safe = 0)
```

PLC OUTPUT \rightarrow EVAC Cmd = 1

TRIGGERING EVENT- PROTECTION REQUEST TO ALL THE UPSTREAM ZDNES:

$$(MODE_Rep = 1 \land EISb_Pos = 0 \land EISa_Safe = 0)$$

PLC OUTPUT \rightarrow SECU. Up = 0

TRIGGERING EVENT- ZIV SAFE STATE SENT TO ALL DOWNSTREAM ZONES:

```
(EISb. Pos = \mathbf{1} \land MODE. Bea = \mathbf{0}) V (ACC. Tst = \mathbf{1}) V (ACC. TFT = \mathbf{1})
```

PLC OUTPUT \rightarrow SECU. Ok = 1

Edms: 1310209

Major Advantages

- Simplify communication with the contractors by eliminating many possible sources of ambiguity.
- Simplify the access to the information.
- Production of explicit Formal Proofs of Correctness. Ex via the application of Logic Solvers to the system of Boolean equations.
- Improve the definition and the quality of the final FIS Validation Test Plan.

Major Advantages – FIS Validation

PROBLEM:

Validate efficiently all Safety Interlock Functions of the new CERN Personnel Protection System of PS accelerators in order to discover all major bugs before the deployment phase.

OBJECTIVES:

- Define an Algorithm and a Test Criterion to derive all possible relevant tests for a given FIS.
- Perform all needed tests in a reasonable time.
- Demonstrate/Measure the Test Coverage obtained.

TESTING STRATEGY

Test Criterion:

Verify the output values for all possible events triggering the FIS interlock actions.

> Test Generation Algorithm: $T = \{t \mid \varphi(t) = true\}$

$$T = \{t \mid \varphi(t) = true\}$$

<# Executed Tests> / <# Total Tests> Test Coverage Proof:

Edms: 1310209

Major Advantages – FIS Validation

FIS CODE	TEST CASE SCENARIO	CATEGORY
FIS_1	ACTIVATION OF THE REPLI MODE FOR THE ZIV	SAFETY

TEST CASE MODEL:

 $\Phi_{-1_1} = ((\underbrace{MODE_Acc} = 1 \lor MODE_TFA = 1 \lor \underbrace{MODE_Tra} = 1) \land \underbrace{ACC_Tst} = 0 \land \underbrace{ACC_TfT} = 0 \land \underbrace{EISb_Pos} = 0) \lor (\underbrace{MODE_Acc} = 0 \land \underbrace{EISa_Safe} = 0)$

TEST CASE RESTRICTIONS:

R1 = (MODE_Acc=1 \(\text{MODE_TFA} = 1 \) \(\text{(MODE_Acc} = 1 \) \(\text{MODE_Tra} = 1 \) \(\text{(MODE_TFA} = 1 \) \(\text{MODE_TFA} = 1 \)

 $\mathbf{R}_2 = (ACC.Tst = 1 \land ACC.TfT = 1)$

 $\mathbf{R}_3 = (MODE_Acc=\mathbf{0}) \land (ACC_Tst=\mathbf{1} \lor ACC_TfT=\mathbf{1})$

TEST CASE GENERATION MODEL:

$$(\Phi_{1_1} = 1) \land (R_1 = 0) \land (R_2 = 0) \land (R_3 = 0)$$

SYSTEM VERIFICATION PROPERTY:

 $(MODE_Rep = 1)$

Total Variables:	7	Total State Space:	128	Scenario State Space:	10
I/O Types:	DIGITAL	Test Impact:	PLC ZIVX PLC OKC	Execution Strategy:	MANUAL

Major Advantages – FIS Validation

<u>Test Instances auto-generated by MATLAB:</u>

	MODE_Acc	MODE_TFA	MODE_Tra	ACC_Tst	ACCLITI	ELSb_Pos	ElSa_Safe	RESULTS
Test 1	0	0	0	0	0	1	0	
Test 2	0	0	0	0	0	0	0	
Test 3	0	0	1	0	0	0	1	
Test 4	0	0	1	0	0	0	0	
Test 5	0	0	1	0	0	1	0	
Test 6	0	1	0	0	0	0	1	
Test 7	0	1	0	0	0	0	0	
Test 8	0	1	0	0	0	1	0	
Test 9	1	0	0	0	0	0	1	
Test 10	1	0	0	0	0	0	0	

Future Works

Conclusions

- It is essential to clearly fix the testing objectives in order to obtain a performant Test Bench for Safety Validation.
- The main Test Bench realization principles shall be related to: Scalability, Flexibility, coherence with the real system, easy operability and maintenability.
- It has to be taken in mind that an efficient Test Bench is NOT the only Key for ensuring the quality of the Safety Functions Validation task.
- The adoption of Formal Specification Languages for the Safety Functions description will improve the conception and the Quality of the final Verification & Validation.

29/08/2013

