

PLC-based control

- Process Control, Interlocks, safety instrumented systems (Vacuum system, Cryogenics, Detector safety systems)
- Application standardization
 - UNICOS
- PLC experience
 - Experience with PLC from different vendors
 - Future trends for PLCs

Objectives

- Show that there is not a single solution but different automation solutions may be applied depending on different factors
- Emphasize the importance of :
 - Standards
 - A control framework
- Share our experience
 - PLC suppliers
 - PLC market evolution

- In summary just some more food for thinking!

Introduction

Process Control

Interlocks

Safety Instrumented Systems

PLC-BASED CONTROL

CÉRN

PLC @ Automation: what for?

- One of the CERN goals: maximize uptime of the instruments (accelerators, detectors,...) in order to optimize physics data availability
- This objective implies the maximum availability and optimal operation of all the auxiliary/utilities systems (e.g. cryogenics, cooling, HVAC, gas, motion, interlocks,...)

the correspondent control systems must ensure this.

- What is challenging at CERN?
 - Environment (radiation areas)
 - Large systems (highly distributed)
 - Complexity (control logic)
 - Precision (measurements)
 - Performance (regulation)

PLC-based control systems

- Process Control vs. Safety Control
 - Process Control systems are ACTIVE or DYNAMIC
 - Failures are inherently self-revealing
 - Flexible systems: allow frequent changes
 - Safety Systems are PASSIVE or DORMANT
 - Operate without notice for long periods
 - Design to allow little human interaction

Separation of control and safety??

Process Control Safety Systems

Introduction

Process Control

Interlocks

Safety Instrumented Systems

PLC-BASED CONTROL

CERN

Use Case: LHC Cryogenics Control

LHC tunnel (27 km)

CERN

Use case: LHC cryogenics control

- 27 km of decentralized instrumentation and control
- 50.000 I/O, 11.000 actuators, ~100 PLCs, ~40 IPCs
- 26 SCADA servers : 1.5 million TAGS

WinCC OA HMI in the CCC

Instruments	Range	Total
TT (temperature)	1.6-300K	9500
PT (pressure)	0-20 bar	2200
LT (level)	Various	540
EH (heaters)	Various	2500
CV (Control Valves)	0 - 100 %	3800
PV/QV (On Off Valves)		2000

Tunnel Instrumentation

Electro-pneumatic positioner, SIPART PS2

RadTol in-house electronics for signal conditioning and actuation

SCADA Periphery [M address]

Logging DB Gb/day

LHC Tunnel cryogenics control

Cryogenics control: Large applications

Requirements

- Large systems: thousands of decentralized I/O
- Extensive feedback control
- Large connectivity
- High communications throughput

PLCs deployed

- Schneider Premium in He Production
- Siemens S7-416 in the tunnel
 - >1000 Source files: 250000 lines of SCL code
- High density of connections
 - Up to 25 in a PLC all together
 - Up to 15 connections on the control layer

Operational Experience

- High reliability except some radiation (Single Events) on hot places.
- Supplier PLC component default identified and corrected

CO₂ Cooling Control

Courtesy of Lukasz Zwalinsky PH/DT

A natural evolution from Profibus towards the Schneider native solution: **Ethernet/IP**

HVAC: Tunnels ventilation

- 628 m with decentralized instrumentation and control (8 technical rooms and 4 galleries)
- 2 PLCs S7-317 PN/DP ensuring the ventilation function be always on
- PROFINET fieldbus (decentralized I/O)
- 1 SCADA server: < 2000 TAGS (in progress)

PS installations

Requirements

- Mostly S/M plants
- Local operation
- Some critical installations

Solutions

- Small/Medium PLCs
- Decentralized I/O via Profibus
- Sometimes with a backup PLC

ISOLDE Vacuum

ISOLDE (On-Line Isotope Mass Separator)

CERN facility dedicated to the production of radioactive ion beams for nuclear and atomic physics.

- ISOLDE Vacuum instrumentation
 - Vacuum Pumps, Gauges, Valves
- Vacuum systems
 - Small/medium systems
 - No feedback control
 - Repetitive systems
- ISOLDE Vacuum controls

Usually Small/Medium PLCs

- Siemens S7 3xx-PLC
- WinCC OA SCADA.

Source courtesy of TE/VSC

Introduction

Process Control

Interlocks

Safety Instrumented Systems

PLC-BASED CONTROL

Detector Safety System

- The **DSS** saves from harm a Particle Detector by executing **protective** actions in response to the detection of user-defined **Alarm Conditions**.
- Sensors, Actuators or Alarm
 Conditions can be added or
 re-parameterized at any time by the user, without stopping the system

Experience (2007 - 2013)

- 1 stop caused by the active backplane
- Some parts (optical links connectors, CPU) covered by redundancy

	ALICE	ATLAS	CMS	CMSX	LHCb
DSUs	7	7	6	10	3
Analog Sensors	322	4	6	20	82
Digital Sensors	82	582	431	1540	246
Alarm Conditions	195	581	417	520	297
Alarm->Action links	~220	~2000	~770	~1850	~1150
Actions	223	309	232	513	191

Requirements

- Availability
- Flexibility in configuration

Solutions

SIEMENS PLC S7-**414H**Redundant Profibus network

JHC Collimators

Environmental temperatures

- 112 collimators (LHC ring and the transfer lines from the SPS to the LHC)
- Interlocks at jaw and water temperatures

Requirements

- Reliable system
- Interconnection to the Beam Interlock

Interlock control system

- Based on S7-315 2PN/DP (15)
- Double wired output to the BIC
- WinCC OA as SCADA

Experience [2010-2013]

- Only 1 beam dump (caused by PLC failure)
- Enters in the MTBF expectations

Powering Interlock Controller

- PICs ensure that:
 - (1) the particle accelerator can only start when all relevant systems have the necessary operational readiness
 - (2) the proton beams shut off within a few milliseconds if critical failures occur.
- Underground Distributed system over the whole LHC circumference
- 36 industrial controllers SIEMENS PLC
 319-3 PN/DP (non-safety but optimized for speed: 1ms cycle time)
- Total of ~500 electronic cards (designed in-house
- Redundant power supplies

Introduction

Process Control

Interlocks

Safety Instrumented Systems

PLC-BASED CONTROL

Safety Instrumented systems

HTS Winding machine

- Prototyping HTS 600A main conductor for the LHC magnets (YBCO,

BSCCO or MgB2)

Safety Functions

- Emergency stop
- Access
- Motor cover

Equipment

Safety solution based on: Siemens S7-317F PN/DP Profisafe on Profinet Sinamics Drives

Safety Instrumented Systems: TIM

Train Inspection Monorail (TIM) for the LHC:

TIM is equipped with a **laser scanner** to ensure that the vehicle will always stop immediately if it encounters people still in the tunnel, or an unexpected obstacle.

Solution

The communication with the monitoring computer is performed via **3G** mobile network

- *Fail-safe* controller Simatic S7-300 with fast Profinet Siemens CPU **319F-3** PN/DP
- **Profisafe** communication between the individual modules of the vehicle via IWLAN

UNICOS APPLICATION STANDARDIZATION

Industrial Control (a) CERN

Just the main topics...

GS department

Access Control Systems
Building Automation
Environmental measurements

BE department

RF systems
Magnet Alignment
Accelerator Controls

TE department

Cryogenics Vacuum Equipment Protection

EN department

Electricity
Cooling and Ventilation
Handling (Robotics)

Motion Controls

EN/ICE
Industrial controls

PH department

Experiment DCS
Exp. Magnets Control
Exp. Vacuum
Other process control:
(e. g. CO2 cooling,...)

Creating standards: UNICOS

• UNICOS (UNified Industrial Control System) was born at CERN as a need to develop the LHC cryogenics control system

- The goal was to create an **industrial control system** covering the upper two layers of the typical automation pyramid.
- Based on industrial standards:
 - ISA-88 / IEC-61512: Batch control
 - IEC-61499 : Distributed systems

 Facilitate the task of the automation engineer by allowing him/her in focusing only in the automation duty and not in the software production itself.

A necessity of specialized **generation tools** to create **automatically** such industrial control systems both in the PLC and the SCADA was identified

UNICOS Industrial components

- SUPERVISION, Visualization and programming
 - SIEMENS WinCC OA (PVSS) SCADA (standard)
- CONTROL
 - SIEMENS, Schneider (standards)
 - Industrial PCs: SIEMENS IPC, Codesys

FIELD LAYER

- Industrial instrumentation: Sensors, actuators
- Industrial customized actuators: Profibus PA positioners
- Home made electronics: ELMB
- Virtual instrumentation: VFT (flowmeters)

COMMUNICATIONS

- Fieldbuses: Profibus, WorldFIP, CAN (CERN standards)
- Ethernet based: Profinet, Ethernet/IP
- TSPP: Time Stamp Push Protocol

SIMATIC WinCC Open Architecture

UNICOS Basics

UNICOS establishes:

 A well defined set of standard objects (device types), both in the control and supervision layers, modeling most of the equipment and needs of continuous processes

- I/O Objects
 - ✓ Digital I/O
 - ✓ Analog I/O
- Field Objects
 - ✓ OnOff
 - ✓ Analog
 - ✓ AnalogDigital
 - ✓ Local
 - AnaDO

- Control Objects
 - ✓ Controller
 - ✓ Alarms
 - Process Control Object
- Interface Objects
 - ✓ Parameter (Digital, Word, Analog)
 - Status (Word, Analog)

- The relationships between them
- A formalized way of :
 - Define the process units of an industrial process (ISA-88)
 - Programming the specific process logic for those units

UNICOS CPC Object Model

CERN

Layers Integration

TCT (Type Creation Tool)

UNICOS CPC Overview

I/O Channels

Field Objects (Valves, Heaters, ...)

Process Control Objects (Compressors, feedbox, ...)

Instances

Logic

Additional services:

Long-Term archiving

LHC alarm system

CMW interface

PLC and SCADA

Instance Generator UNICOS CPC package

Baseline

PLC and SCADA Instances

Precise placeholders where the control engineer must write the process logic

Logic Generator

Simplified HMI tool to create process synoptics (drag & drop) **Diagnostics tools System Integrity**

Operators

Process Engineer

Control Engineer

UNICOS Methodology

1. Specifications creation

- Instances: data captured by filling EXCEL (XML) worksheets
 - Eventually these specifications may be created also automatically (e.g. DB oriented)
- Functional Analysis + Logic specification: Word templates

2. Automatic generation (UAB: UNICOS Application Builder)

- Instance generator
- Standard Logic generation

3. Manual intervention

- Process logic coded by the control engineer in an standardized way. Some applications may create automatically the logic based on templates.
- Process synoptics: drag & drop

Support

- Documentation, Tutorials
- Online support

Process Analysis: Decomposition

IEC 61512-1 Physical model

Process vs. control Architecture

Operation in multiple scenarios

Automatic
Generation of the
PCO objects (From Fl
Specifications)

Automatic
Generation of the
objects and
connections
between objects
(From I/O & FI
Specifications)

(1) Specifications

DeviceIdentification	DeviceDocumentation		FEDeviceIOConfig		FEDeviceParameters FEDeviceParameters					
					FEChannel					
Name	Description	Electrical Diagram	Remarks	FE encoding type	InterfaceParam1	Range Min	Range Max	Raw Min	Raw Max	DeadBand (%)
QSDN_4_1TT4001	Vessel 1- Heater section1-Temp. control	AI1.0			%IW1.1.0	80	350	0	10000	0.025
QSDN_4_AI1	SPARE	AI1.1			%IW1.1.1	0	100	0	10000	0.025
QSDN_4_1TT4002	Vessel 1- Heater section2-Temp. control	AI1.2			%IW1.1.2	80	350	0	10000	0.025
QSDN_4_1TT4003	Vessel 1- Heater section3-Temp. control	AI1.3			%IW1.1.3	80	350	0	10000	0.025
QSDN_4_1LE400	Vessel 1- LN2 Level	AI1.4			%IW1.1.4	0	1350	0	10000	0.025
QSDN_4_1PT400	Vessel 1- LN2 Vessel Pressure	AI1.5			%IW1.1.5	0	4.0	0	10000	0.025

UNICOS CPC Specs (xls/xml file)

Functional Analysis + Logic specification (Word templates)

(2) Code Generation (UAB)

3) Manual interventions

The goal is to reduce the human intervention:

- Process logic can be either:
 - coded by the control engineer in an standard way.
 - Some applications may create automatically the logic based on templates.
- HMI Process synoptics: drag & drop from a UNICOS-CPC catalog

For the SCADA and the Local panels

1 2 3 4 Demonstrator STEMENS Synoptics design UN STATICS

Logic Placeholders

Advantages

Advantages

- Uniform and maintainable code (IEC 61131-3 languages is not enough)
- Reduced team of engineers
 - Development (Rapid and Homogenized applications)
 - Commissioning (e.g. PLC & SCADA mapping, no development at SCADA)
 - Maintenance (Original developer is not any more critical)
- Unified operation in control rooms
- Centralized monitoring

Some issues to overcome

- In case of multiple technologies (e.g. Siemens/Schneider): Baselines maintenance
- May reduce the developer creativity
- Special needs may required non standard solutions (fast interlocks?)

Suppliers experience

Present and FUTURE trends

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC WG mandate

• PLC Working Group Mandate [1997]

- PLC used to control and monitor technical services, accelerators, experiments and to construct the LHC machine.
- In order to <u>optimize design time</u>, <u>installation time and maintenance effort</u> the <u>number of the PLC</u> families of products must be reduce to a minimum

- WG Actions

- Market survey to find the optimal **PLC suppliers** to homogenize the CERN inventory
- Define the **policy** for the next 10 years of usage of PLCs at CERN
- Take into account the already existing "recommendation on the usage of fieldbuses"

PLC (a) CERN, 1998

• CERN Inventory, June 1998

PLC selection

• Selection criteria, October 1997

MANDATORY CRITERIA FOR PLC MANUFACTURERS

- 1) Have an Annual Turnover of at least 50 MCHF in the field of PLCs.
- 2) Have Ten Years Experience in the design and production of PLCs.
- 3) Offer a Range of General Purpose PLC Products (This Market Survey does not concern the Supply of complete DCSs).
- 4) Have a proven Experience of PLC Applications in a large Variety of Fields such as Electricity, Water, Gas, Cryogenics, Cooling, Ventilation, Process Control, Machinery, Safety Systems...
- 5) Offer a Line of Products conforming to the French, Swiss or *European Safety Standards*.
- 6) Supply PLC Products originating from a CERN Member State.
- 7) Have Commercial and Technical Support in 15 out of 19 CERN Member States.
- 8) Provide a direct Network Interface to Ethernet with TCP/IP Communication.
- 9) Provide Fieldbus Interfaces to PROFIBUS, WorldFIP or CAN.
- 10) Support Uniform PLC Programming in Accordance with IEC 61131-3 and support GRAFCET.

PLC Market Survey

QUALIFICATION of MANUFACTURERS PLC MARKET SURVEY - MS/2547/SL

Γ	MANDEN	QUALIFICATION CRITERIA										
500000	MANUFAC TURERS	TurnOver > 50 MCHE	Experien. >10	General Purpose	Safety	Redun dancy	Origine Europe	Support CH & F	TCP/IP Commu	CAN Profibus WorldEIP	IEC 1131-3	CATION
	ABB	YES	YES	NO?	YES	YES	YES	YES	YES	Profibus Develop.*	YES*	NO
	ALFA LAVAL	NO	YES	YES	NO	YES	YES	YES	YES	Profib.*	Partly YES	NO
	CEGELEC	YES	YES	YES	NO	YES	Partly YES	YES	YES	Profibus WorldFIP	YES	NO
	ELSAG BAILEY	NO	NO	YES	NO	YES	YES	YES	YES	Profibus	YES	NO
	GE FANUC	YES	YES	YES	NO	YES	NO	YES	YES	Profibus	NO	NO
	INGELEC TRIC-TEAM	NO	YES	YES	YES	YES	YES	NO	YES	CAN Profibus	YES	NO
	KLÖCKNER MOELLER	NO	YES	NO	NO	NO	YES	YES	NO	Profibus	YES	NO
	PEP MODUL. COMPUTER	NO	NO	NO (VME)	NO	NO	YES	YES	YES	CAN Profibus	YES	NO
	ROCKWELL (F) + (UK)	YES	YES	YES	YES	YES	NO	YES	YES	CAN Profibus	YES	NO
	SAT	YES	YES	YES	NO	YES	YES	СН	YES	Profib *	NO	NO
	SCHNEIDER (CH) + (F)	YES	YES	YES	YES	YES	YES	·YES	YES	Profibus WorldFIP	YES	5725
	SELECTRON	NO	YES	YES	NO	NO	YES	F	NO	CAN	YES	NO
	SIEMENS	YES	YES	YES	YES	YES	YES	YES	YES	Profibus	YES	YNS

^{*} No Detailed Information or Description given in the Technical Documentation Provided

Updated on 29/04/98

Standard PLCs @ CERN

- Recommendations for the use of PLCs at CERN, October 1999
- The PLC WG recommends the use of both **SCHNEIDER** and **SIEMENS** (qualified according to technical and commercial qualification criteria)

- Actions

- Organize Technical trainings
- Negotiate special purchasing conditions
- Produce documents for future technical specifications
- Organize centralized support : GUAPI : PLC users group

organise technical training courses to familiarise users with the chosen PLC

CERN management endorses these recommendations and <u>ask CERN designers</u> and <u>developers</u> to base their projects and technical specifications for equipments operated at CERN on the two complementary recommendations for PLCs.

PLCs inventory at CERN

Data collected year 2012

PLCs oriented applications

Classic PLCs

- Cryogenics (Accelerator and experimental areas)
- Gas systems
- Cooling systems
- HVAC
- Motion: servo-motors and Stepping motors
- RF
- Vacuum
- Electrical systems
- Interlocks
 - PIC: Powering Interlocks
 - CIS: SPS Power converters interlocks
 - Collimators Temperature Interlocks
- Monitoring
 - RAMSES

Safety Integrated systems

- Access Control (accelerators and special areas)
- Machine-tools sector:
 - Winding machines: HTS cables
- WIC: Warm magnets interlocks
- Cranes control
- Autonomous Mobile Equipment
 - TIM (Train mono-rail)

Redundant systems

- Protection systems in experimental areas
- Electrical systems

Experience with suppliers

• More than 15 years of experience

- There is not a perfect supplier but a satisfactory supplier
- Lack of competition between suppliers is not healthy... as long as you can afford it.
- Despite being a rather conservative technology segment, the supplier must follow tendencies (desirably without imposing continuous upgrades)
- A strong and reactive technical team must be behind the curtains (commercials are not enough)
- Take your time before including in your portfolio a new product
- Key is not having a supplier but a partner

Industrial Partner: SCHENEIDER

Schneider Electric

- Dedicated hotline
- Customized prices (in function of sales turnover)
- Technical support on site
- Not a simply supplier but a partner: Collaboration
 - Bi-annual meetings at CERN and the headquarters
 - Radiation tests
 - Field tests (e.g. M580, Ethernet/IP)

Industrial Partner: SIEMEN

SIEMENS

- Dedicated hotline in Germany
- Customized prices (in function of sales turnover)
- Technical support on site
- Not a simply supplier but a partner: Collaboration
 - Bi-annual meetings at CERN and the SIEMENS headquarters
 - SIEMENS roadmap
 - CERN requirements (technological limitations, missing functionalities,...)
 - Beta testers: e.g. TIA portal
 - Prove new solutions (e.g. Touch panels / UMTS comms)
- Reinforced by the presence of SIEMENS in the Openlab.

Other suppliers...

- Risk of increasing the PLC suppliers at CERN
- Supplier Loyalty: A matter of investment
 - Beckhoff:
 - IPC (Codesys) & EtherCAT
 - XFC: EtherCAT PLC with 12.5 µs cycle time
 - WAGO: BACNet communications
 - Others in the building automation segment

We keep an eye on Rockwell PLCs ...

• The Organization/Institute must **provide** more than just a brand(s) of PLCs!

- Provide unified services
- Promote user knowledge exchange
- Central support: High expertise level required

CERN wide PLC services

- Versioning and software distribution
 - Versioning systems usage guidelines for PLC developers. (e.g. SVN)
 - Central Software distribution (CMF)
- Database support for PLC users (Layout)
 - CERN equipment catalogue
 - Tools to populate databases for functional components
 - Asset database for component tracking.
- Availability (machines uptime)
 - Diagnostics & monitoring: (PLC agent)
 - *PARADIS*: Repository for PLC application distribution.
 - Critical spare stock: Fast intervention ensured 24/7
- Optimize Knowledge
 - **GUAPI**: PLC Users Working Group
 - Set of demonstrators and training test-benches
- Hardware
 - Reduced set of hardware (recommended hardware)

CERN wide PLC services

Maintenance

- Corrective and Preventive
 - Ambient environment and PLC conditions (Temperature, humidity, dust, vibrations,...)
 - Connection conditions (Visual inspection, Terminal screws, Line voltage check,...)
 - Runtime conditions (LEDs status, Cycle time, log messages, memory occupancy,...)
- Full available documentation
 - Installation guide
 - Operation manual
 - Maintenance manual
 - Spare list
 - Obsolescence management (How do you ensure your piece is not discontinued?)
 - Layout diagram
 - Troubleshooting questionnaire (Quality Control)
 - Experts contact numbers
 - Back-up program
- CMMS: Computerized Maintenance Management System

GUAPI: PLC Users Working Group

A **collaborative service** aiming to optimize:

EFFICIENCY

- Identify generic developments which could be created, maintained and supported by users teams
- Knowledge sharing: Avoid duplication of efforts by identifying existing competence and solutions

CERN-WIDE COMMON POLICIES:

- Spare material
- Technical issues follow-up
- Upgrade of software, firmware, hardware

EVOLUTION

• Identify requirements in terms of new functionalities

TRAINING

- Identify needs and organize appropriate trainings
- Product evolution roadmaps
- "Direct line" with manufactures: Outcome of needs and problems before the regular meetings with manufacturers

But still a lot to do...

- Some fields to improve
 - Deployment
 - Testing & verification
 - Commissioning

Deployment

Questions

- What details have changed from one archived version of a project to the next version?
- Which is the version currently deployed in the PLC?
- Who made the last download?

Suppliers tools

- SIEMENS: Simatic Logon, Version Trail and Cross Manager
 - Simatic Logon FDA approval
- Schneider Electric: Third party solution
- Third-party: MDT AutoSave Change Management

• In house developments driven by

- Missing functionalities
- Internal needs (framework baseline version identification)

Changes on the supplier Platform

Changes on the Generation tool

UNICOS-CPC versioning

PLC baseline

Testing and Verification

- Testing: Standards
 - ANSI/ISA-62381-2011 (IEC 62381 Modified): SAT and FAT activities
 - Automatic tests (unit test-like): Based both in SIMBA box + SCADA scripting

Verification

Formal methods

Execution platform

ST code SFC code

...
IF c THEN
s1;
ELSE
s2;

UNICOS objects (Baseline)

Spec

Functional Analysis

UNICOS

Non Formal world

ංරි

UNICOS Formal representation

BIP Model 08>

C/C++ code

Simulation & Automated Test

Verification

Formalization

DFinder

NuSMV

Testing and Commissioning

- Virtual commissioning
 - Simulation techniques (static and dynamic)

Suppliers experience

Present and FUTURE trends

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC present and future trends

- Some of them may be well known already
- Some of them may be not more than possible roadmaps

- In any case a summary of:
 - Automation market feelings
 - Experience with suppliers when talking about prospects and concepts...

PLC Automation trends

• Industry 4.0

4th industrial revolution: where IT meets production.

Some topics:

- Security
- Cloud solutions
- PC-based technology
- WLAN solutions
- Open networking
- General IT concepts

German Research Center for Artificial Intellegence courtesy

PLC Integration

- Further integration: PLC + SCADA
 - Mainly Overall and not individual performance
 - Minimize the effort of Engineering
 - Engineering tools for integrated automation
 e.g. Etool (SIEMENS), PlantStruxure™ (SCHNEIDER)
- Integrated engineering
 - Life cycle engineering
 - Plant asset management
 - PI&D, EIC, Controls, Maintenance...

PLC Hardware

Hardware improvements

- Speed & Memory
- On board diagnostics
- Functional Safety integrated
- Remotely located systems (I/O)
- Field devices with embedded intelligence
- Redundancy until the industrial communicat
- Low cost CPUs (small projects)

Controllers: PLCs, PACs, IPCs

- PAC: Multi-domain functionality (Process control, motion, ...)
 - Single development tool
 - Open and flexible architecture
 - Use of many communication standards
- IPC (e.g. Local logging, complex algorithms: predictive control)

IT integration

Adoption of new IT paradigms:

- Software management
 - Deployment
 - Versioning
- Interaction
 - Openness
 - Interoperability by ensuring standards
- Development
 - Design (OO Techniques)
 - Multiuser

IT integration (2)

Not only PRO's!

Time to the market is reduced dangerously and expected quality is effectively compromised

PLC: Cyber Security

Reinforced Security

- Standards: ISA-99
- Certification (e.g. Achilles)
- Integrity checks on IDEs
- Secure access (e.g. encrypted passwords...)
- Defense in depth
- Secure development

• NDA agreement

Others... not exhaustive

Industrial communications

- Interoperability and not just connectivity
- Not anymore depending of a single supplier! ... but still a *sectorization* by suppliers alliances.
- OPC UA: Interoperability Standard for Industrial Automation

Embedded IT features

- WWW servers
- Simple "supervision" synoptics production: rapid prototyping
- Enlarged diagnostics

Local operation

Seamless Integration of multi-touch panels

PLC trends: Keywords

Engineering Integration Security

Standards

Interconnectivity

IPCs

All these slides represent the work of many people working at CERN The PLC future trends is a particular vision of the presenter

PLC Selection criteria

• Brand loyalty: A matter of investment

commercial Issues	Technical Issues				
Quality of products	 Quality of tech support 				
2. Quality of pre-sales service	2. Reusable programming code				
3. Local presence	3. Integration with 3rd party devices				
4. Wide range of products	4. Uses IEC 61131-3 languages				
5. Supplier's reputation	Supplier's reputation				
6. Discount price	6. Supports open networking standards				
7. Willingness to customize products	7. CPU scan time				
8. List price	8. Wide range of related products				