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Cea Overview

W Read-outs:
> Geometry
» Electronic

@ Measurement campaigns:
> Set-ups
> Results
> lIssues of the second campaign for the strip read-outs

W Space charge effects:
> Main results
> Final tables

@ Background:
> Simulations on-going

® Final remarks
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Strip read-outs
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Cea Strip read-outs

& “Linear strips” : all the strips have the same width.

- material: Cu on ceramic

- strip number: 32

- strip length: 30 mm

- strip width: 0.8 mm

- inter-strip distance: 120 pm

- read-out limits: [-14.66,+14.66] mm
- read-out extension:  29.32 mm

m “Gaussian strips” : variable width size, larger on tails.

- material: Cu on ceramic

- strip number: 18

- strip length: 30 mm

- strip width: 0.8 mm (center) to 9 mm (tails)

9-5-3-2-15-1-09-0.8-0.8-
08-08-09-1-15-2-3-5-9]mm
- inter-strip distance: 120 pm
- read-out limits: [-25.02,+25.02] mm
- read-out extension:  50.04 mm
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CZa Zoom on gaussian strips read-out 7%

F. Belloni Page 4



Electronics ( 1/5 )

FASTER : Fast Acquisition System for nuclEar Research

® Modular digital acquisition

m Possibility of handling up to some hundreds of detectors

m Freedom in set-up building options: yTCA or NIM standards
M Ethernet gigabit connection

® Developed by LPC Laboratoire de physique corpuscolaire of Caen (France) by the group of
David Etasse

Our set-up consisted of:

» 1 yTCA Crate

» 1 motherboard syroco _amc cb
» 2 daughterboards caramel

» 1 motherboard syroco _amc

» 2 daughterboards caras
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RECHERCHE A L'INDUSTRIE

C2a Electronics (2/5)

» motherboard syroco amc _c5

u FPGAs
m 1 and 10 Gbe connection
@ Synchronized by an external clock

» daughterboard caramel

Y N
W 32 channels 3 % é
M Integrating I-to-V conversion front-end V2 20
® Adjustable integrating time from 10 ysto1ms | § 3 &
@ Programmable full scale: 3 pC —12 pC ) % )

U

No negative charges
U

Offset necessary
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RECHERCHE A L'INDUSTRIE

C2a Electronics (3/5)

» motherboard syroco _amc

9 FPGAs
& Synchronized by an external clock

» daughterboard caras

W 2 channels L e P

Y

@ + 1.15V dynamic range
u Input Offset adjustable by software (-1.1V , 1.1V)
m Bandwith: 100 MHz
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DE LA RECHERCHE A L'INDUSTRIE

CZa Electronics (4/5)

> Hardware scheme

Samtec
cable
caramel
\ caramel
Offset box
Detecto alimented
clor
by 6 V o
=1
8
=r
=
o
Z  Ethernet
> cable
Z

syroco_amc
BNC
connector caras

caras

The 2 motherboards are independent
e the DDC316 continuously integrate the current
e trigger coincidence by software interface

(more go-no-go recording than real trigger)

> Software requirement

Ubuntu Linux
e supported on 14.04
e to be released for 16.04
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cea Electronics (5/5)

> RHB (Root Histogram Builder)

F. Belloni CDR - 11" February 2019



Measurement campaigns
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» Up to 100 mA intensity
» 352 MHz bunch freq.

» 3 MeV protons | I
» =1 Hz pulse fireq.
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CZa Difference between the 2 campaigns 70%

1%t campaign 2" campaign

Collimator:
¢ _ =25mm

"§ i

. Wil

\ ‘-nn/:li-.-‘g.m;- “ ‘-:3
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" IPM2 !%

-Y proj_ IPM3 .
- Asym./Sym. - Y proj.
- Asym.

IPM1: Linear strips +/- mcp
IPM2: Optical read-out (mcp + camera)
IPM3: Gaussian strips alone

IPM2 IPM3
- Y proj. - 'Y pro;j.
- Asym./Sym. - Asym.

IPM1: Gaussian strips alone
IPM2: Optical read-out (mcp + camera)
IPM3: Linear strips alone
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DE LA RECHERCHE A L'INDUSTRIE

cea

Some analysis info

F  Run started at 14:47:18

E  Run ended at 14:50:39

F ddp between electrodes: + 7 kV

[ AVmep = 650/2 V

F 1~32mA

FE Central strip signal (dead) replaced with
average of 2 nearby strip signal

B With N. Chauvin we had seen the beam
has 2 components looking like:
e a narrow Gaussian (second component)
superimposed to
e a large Gaussian background (first
component)

F Two data analysis were performed:
e treating the profile as a single Gaussian
e treating the profile as the sum of two
Gaussians

F. Belloni

1% Campaign: linear + mcp (1/7)

Profile Y: Time Evolution

Run info

Q First Component
Mean = 13.495 + 0.509
¢ =7.193 £ 0.760
Second Component
Mean = 15.223 + 0.055
c=2.721+£0.101

%2 Indf = 133.860/24

0.35 —Mean = 15.061 + 0.040

0.3 _ 3.440 +0.045

0.25
2 /ndf = 290.851/27

0.2

0.15

0.1

- -
-
-~ -

0.05

III|III\|IIII|III |IIPLI|III

______

mm

Single Gaussian : o = 3.440 + 0.045 (Xfed ~~ 10.8)

Double Gaussian, 2" component : o = 2.721 + 0.055 (Xfed ~ 5.6)
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1% Campaign: linear + mcp (2/7)

Camera (IPM2) signal formation

500

400

300

200

100

The proton beam ionizes the gas: electrons and ions are created E

Electrons and ions drift in opposite directions (?)

Electrons or ions hit the MCP

The electrons hit a phosphorus screen
Photons are emitted

B

B

B

F Electrons are emitted
B

B

F  The photons hit the silicon matrix of the camera
B

Camera specs: 960 x 600 pixels, 11.72 pum pixel side

x10°

Camera run to compare to strip run:

Run ended at 14:50

Run duration: 90 s

Filename: aprem_005.h5

ddp between electrodes: + 7 kV
Vimep = 587 V

| = 32 mA

First Component

[Mean = 0.562 + 3.969e-04 Mean = -0.985 + 2.009e-03

o= 8.804 + 1.896e-03
::3 = 3.330 + 4.552e-04 Second Component
Mean = 0.725 + 4.244e-04
o= 2.461 + 4.46Te-04

¥2 Indf = 2.700e+06/954

[ %2 Indf = 1.234e+07/957

Single Gaussian

o =3.330 & 4552107 * (x2, ~ 12894)

I,IIIlIIII|IIII|III

Double Gaussian, ond component :

o = 2.461 4 4.467-107* (x2, ~ 2830)
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DE LA RECHERCHE A L'INDUSTRIE

CZa 1% Campaign: linear + mcp (3/7)

Comparison of the histograms of the o values obtained by the Histograms of the o values of the second Gaussian component

fits. Here below is the result when a single Gaussian ( = the narrower) when two Gaussians are used to fit the data.

is used to fit the data

L Strips

- Strips
10—

— Mean = 3.256 rms = 1.380e-01

— Mean = 2.202 rms = 8.717e-01
8l — Camera: Automatic routine

- . . . Camera:

B sometimes fit failure

- Mean = 3.266 rms = 1.475e-01
61— / Mean = 2.462 rms = 5.740e-02
Al
o

C | ‘ .|| Ll | | | [ ||
00 1 2 3 4 5 B 7 8 9 10 0 ”ll L1 1 | L1 11 | L1 1 1 II 1 | 11 lll Ul 1 Ill L1 1 1 ‘ 1 L1 | L1 L1

mm 0 V 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
mm
Comments on the fits: 10°
F Single Gaussian: 00 Stl’lpS
° ils. S
does not account for the tails Camera

2 400
d Xred yZ 1

F  Two Gaussians: 300
e Several misfits (24% here, up to 82% for other runs)

® X_?’ed 74 1 200

. ‘U' . ) 100

The profile can not be described by Gaussians.

A better estimation of the width of the profile
is given by the RMS.

RMS needs to be calculated

on same range!!!

II|IIII|IIII|IIII|IIII|II><

e e iy e e b e b b b I e
—20 -15 -10 -5 o] 5 10 15 20
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DE LA RECHERCHE A L'INDUSTRIE

IPM1 reference system (mm)

:

F. Belloni

19

18

17

16

15

14

13

1% Campaign: linear + mcp (5/7)

>

Compare the center of charge

[
P

i)
——  Strips: X of 2™ Gaussian component
——— Strips: X of histogram
—— Camera: X of 2" Gaussian component
Camera: X of histogram
BPM | | | | | | | | | I | | ] | | | l 1 1 | |
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Signals vertically shifted for better visualization
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DE LA RECHERCHE A L'INDUSTRIE

Runs 2, 7, 8 and 15

| = 32 mA

AV pmep = 700/2 V

Run 2: HV in the cage = + 7 kV
Run 7: HV in the cage = + 5 kV
Run 8: HV in the cage = + 3 kV
Run 15: HV in the cage = + 12 kV

Runs 9, 10 and 11

HV in the cage = + 7 kV
AV mep = 600/2 V

Run 9: I, = 50 mA

Run 10: I, = 40 mA

Run 11: 1, = 31-32 mA

F. Belloni

1% Campaign: linear + mcp (6/7)

5.8

5.6

RMS (mm)

5.4

5.2

4.8

4.6

4.4

4.2

10 cm distance between electrodes

Little statistics
Run tripped.

5.8

5.6

RMS (mm)

5.4

5.2

4.8

4.6

4.4

4.2

CDR - 11" February 2019
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RMS (mm)

5.8

5.6

5.4

5.2

4.8

4.6

4.4

4.2

Runs 11, 12, 13 and 14 £ 52
F 1~32mA % 5 10 cm distance between electrodes
E AV =600/2V =
F Run 11: HV in the cage = + 7 kV C S
F  Run 12: HV in the cage = + 10 kV 4'6:_ H‘“‘“n,ﬂn
F  Run 13: HV in the cage = + 11 kV a4~ B AR
B Run 14: HV in the cage = + 12 kV ol
ab—, | | P | L. | |
7 8 9 10 11 12
HV (kV)
f_ [ i VMCP - 300 V
- ]‘ T VMCP =350V The curves of the RMS as a function of the
- voltage applied in the cage is different
- . for VMCP = 300 V and VMCP =350 V.
= |
E_ 10 cm distance between electrodes
E | I L L | | 1 1 L
4 6 8 10
HV (kV)
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Campaign: gaussian strips (1/2)

Results (I, = 30 mA)

Event 1 Event 1

0.14

012 0.2

041
045
0.08

0.06 04

0.04

0.02 0.05

-0.02

mm mm

Event 1 Event 1
2 os 2
0.4 0.5
HV = + 15 kV ‘ HV = + 19 kV

0.3

0.3

0.2

0.2

041
04

20

mm mm
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Campaign: gaussian strips (2/2) ﬁ

Results (I, = 30 mA)

3.8 10 cm distance between electrodes

RMS (mm)

——e——
-

3.7

3.6

3.5

3.4

3.3

|IIII|IIII|IIII|IIII|IIII|IIII|III
-
-
-—T—-
/
/

i e S

10 12 14 16 18 20
HV (kV)

3.2

) -
i
(o))
0o
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C22 Few words about the SC effects (1/3) 2

Space charge effects

“ In beam dynamics: Coulomb repulsion between the charges of a charged particle beam
“ In a beam profile monitors: perturbation of the trajectory of a charged particle due to the
elm field generated by a pulsed charged beam
= misreconstruction of the real beam profile

S.C. effects calculation

M Quantification of the deviation of a particle from its ideal trajectory

® Multivariable problem as a function of:
» beam structure (energy, intensity, bunch frequency, beam width)
> electric field strength
» nature of the ionisation products (mass and charge)
» momenta of the ionisation products at their creation

® In-house code: » developed at ESS (Cyrille Thomas, MATLAB)
» CEA: - implementation of the code into C++
- plug-in of external files: COMSOL electric fields (F. Benedetti)

TraceWin Garfield++ initial electron and ion momenta distributions

@ Code to calculate the beam (ion/electron) dynamics in particle accelerators
In simple world:
- input: geometry of the beam line through analytic expression or field maps
source particles

- output: x,y,z, momenta and phase of the beam at the desired position
F. Belloni CDR - 11" February 2019 Page 23



C22 Few words about the SC effects (2/3) ﬁ

TRACEWIN:
m We asked for a beam of G =0 = 2.5 mm or G =0 = 3 mm

m We run TraceWin simulations and found the parameters giving such results

m For the configuration ¢ = G, = 3 mm it resulted 6 ~ 29 mm (Tracewin)

IN-HOUSE SC EFFECT CODE:
w Unfortunately IPHI operators can not be sure of the beam size they provide

m We could measure the beam profile along Y (oy ) for different voltages and | = 30 mA
m For o we decided to enter in the simulations for the SC effect the Tracewin value

m We therefore tried to find the c_value making the simulations for the SC effect to

collimate with the exp results
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C2A Few words about the SC effects (3/3) ﬁ

RMS (mm)

4.4 EXPERIMENTAL c,
42:_ SIMULATED foor:
= c =29 mm (Tracewin)
4 [ z
- G = experimental
38— .
— =0 =4 mm (trial & error)
36—
3.4 :— T = ‘-.!‘—':--—_-_—--.___.__2_____4 _ o
32— B S—
3—
28—
26—
I_ | 1 | 1 | | | | I | 1 | I | | 1 | 1 | 1 | | 1 | I | 1 | | | | 1 | 1 | 1 | |
2 4 6 8 10 12 14 16 18 20
ot ; i i . HV (kV)
1% campaign: deviated line + no collimator
confirmed G >0
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Q (pC)

i

[

1.6

1.2

e

0.8

0.6

0.4

0.2

@

offset

Integration_time_, o

z_)ffset _

1

Gaussian read-out (IPM

4\

h 1)
Entries 3168
Mean x 16
Mean y 0.9047
Std Dev x 5.188

Std Devy 0.01107

(o]
—_
o

F. Belloni

1 1 I | 1 1 Il 1
22 24
Channel number

8.19 nA

100 us

Q (pC)

b )
18 Entries 3168
| Mean x 15.5
16 Mean y 0.866
| Std Dev x 9.233
StdDevy 0.2151
1.4
1.2
1:_ — == — e
= e -t gy !_—
0.8 —
0.6— .
= not-working
04— .
- strlp§/
02—
HenE sy .|....|..@|....|....|.
0 5 10 15 20 25 30

1074 s
/ (8.19-107% A) dt =8.19-10 ** C = 0.819 pC
0

Linear read-out (IPM
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Cea 2" Campaign: detection limit (2/4)

RGA: residual gas analyser (Hiden Analytical Hal-201-rc)

= 20 x107°
E |
18 H, = 69.6 %
— 0,
. H.O 15.9 %
Nzl'CO =11.1%
14 0, =1.4%
COZ =04%

12
Others =1.6%

10

HNEEEEEEEEEEEEEEEN

| 1 I 1 | 1 | 1 1 [l |
% 20 40 80 80 100
A/(Stripped electrons)
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Cea 2" Campaign: detection limit (3/4)

>

RUN| | p GAUSSIAN STPs | LINEAR STPs CAMERA EXPECT. B-B|EXPECT. G++
(mA)| (mbar) |Q £o, (pC/pulse)|Q o, (pC/pulse)|Q +o, (arb. unit)| Q (pC/pulse) | Q (pC/pulse)
1 [ 721[2910°% 0.94 + 0.06 1.05 4+ 007 [4.6 10° £+ 6.4 10° 0.119 0.119 *0.52
2 [14.97(7510°% 2.03 = 0.08 155 + 0.10 [1.0 10° + 1.3 107 0.649 0.649*0.52 point at 44mA
3 |27.09(6.6 10° 3.72 4+ 0.11 278 £0.09 [1.9 10° £ 1.7 107 1.034 1.034 *0.52 discarded because
bl 51130~ FI34—+0-1F 5+2—+062% cifferent—gam 2735 2-735%6-52 of no pOSSlblllty of
camera validation
x10° —~ 10
E 2‘]003 % » Linear Strips
% 1800;* gl g| —— Gaussin Strips
Z{ 1600;— 70
g 14002— 65—
1200 — 5F
1000; 42_
soof— 3;
suuf— 2;—
4003— 1;
T NS R a Ty ZIB%?mA) 0"6‘3"‘5‘3"‘1‘0“'1'2“'1'4”'1'6“'1‘8"'2‘0"'2‘2"'2'4”‘2'6'I‘(‘r2n€\)‘
RUN | GAUSS/GAUSS | LINEAR/LINEAR | CAMERA /CAMERA | EXPECT./EXPECT. | INTENS./INTENS.
1/2 | 0.47 £0.02 —0-68——004— 0.45 £ 0.01 0.18 0.48
2/3 | 055+ 0.02 0.55 £+ 0.02 0.54 + 0.01 0.62 0.55
3/4| 051+ 0.01 0.49 + 0.02 different gain 0.38 0.60
Linear set
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Cea 2™ Campaign: detection limit (4/4) 70/«;«

o —— Gaussin Strips

Q/pulse (pC)

'S
||||||||||||||‘I|II|IIII|IIII|||||||||||

-
-
-
-
-
-
-
-

=
L
1

L

o
o
iy
(=]
—_
)]
(%]
=
(]
o

30
I (mA)
Q=0 1=05mA
According to Bethe-Bloch Q= 0.5 mA , corresponds to 10° electrons/ions created per
pulse. 10° electrons/ions created per pulse is also the charges expected in the Spoke
section at ESS (at 90 MeV) according to Bethe-Bloch
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Cea 2" Campaign: problems

Few words about the signals :

The following pictures are plots of the signal in a single strip as a function of the time for:
> 1% campaign

» gaussian strips alone

> | =30 mA

» strip number 12

> integration time DAQ = 30 u s

signals

0.25

0.25

charge (pC)
o
[+
charge (pC)
o
3+

0.15

0.

—

lon mode (+17 kV) Electron mode (-2 kV)

0.05
0.05

OD
-
o
n
o
w
S
o~
o
b
=]
(2]
=]
~
o
o)
o
0
=]

| | 1 1 1 | 1 1 1 | 1 | 1 | 1 1 1 | 1 1 1 | |
60 80 100 120 time (s)
time (s)

oo
n
[=1
.
o

> visible pedestal (= offset+el. noise) and signals every 1 s (pulse v = 1 Hz)
» positive charges moving towards the strip, result in a positive signal
» negative charges moving towards the strip, result in a negative signal
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Cea 2" Campaign: problems

> 2" campaign

» gaussian strips alone

> | =25 mA

» strip number 12

> integration time DAQ = 100 u s

charge (pC)

Normally you should collect no charges....but we
see negative signals.

I I S I A
50 100

1 1 I
150

1 1 |
200

1 1 |
250

1 1 1
300
time (s)

=}

Event 1

pC

» The higher the beam intensity, the “higher” the
HV = 18 kV negative signals (and changing beam intensity results
in changing the beam dynamics ... no proportionality)

0.5
0.4

0.3

» The lower the electric field, the lower the ion signal
collected on the read-outs

0.2

0.1

»You can reconstruct the beam profile, but the trends
of the RMS as a function of the beam intensity and HV
m  are biased.
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Cea Electron background: 2™ campaign 70%

y IPM 1 (strips, X prof.) IPM 2 (camera, Y prof.) IPM 3 (strips, not used)

o | Vc = -9 kV
Vd= 9kV

\4

ATE i
[
What you see in the IPM2 (camera), i.e. projection on Vd when:
. Vb=+962 V™

bEEsOVIRS Ny Ch e

mmmmmm
oooooo

oooooo

oooooo

oooooo

We saw an electron background component, as the beam s hitting somewhere
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Cea Electron background

1% campaign 2"! campaign
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Cea Electron background: 2™ campaign 7%

. 25 mm In the second campaign there was a collimator of (which
: \. . diameter blackened) . Could it be the source of additional electron
\ background?

GEANT4 simulations BUT

» simple model with few elements

» no idea of beam width and divergence before the
collimator

» too few particles shot wrt particles in the beam (much
higher statistics needed)
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Cea Electron background: 2™ campaign 70%

» From the simulations: most of the electrons have energies in the range [100 eV, 10 keV]
BUT there is a threshold on the minimum energy creation

> Still opened issue. Possible cause:
- electrons created by the presence of the collimator and entering the chambers?
- negative signal induced in the ground of the strip detector through common mechanical
ground due to charges hitting the collimator or the chamber?
- in the first campaign we had protected the read-outs with mylar foils, in the second no
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Space charge effects: main results
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C22 Parameters on which SCE depends &

@ Beam “structure” (intensity, spatial spread, energy)?

‘ 2.86 ms I 71.4ms |
» Energy: [90, 2000] MeV
> Current peak: 62.5 mA i
e e e L 11T TP 1]
> Pulse frequency: 14 Hz (duty cycle 4%) — - - 1y 111
> BunCh frequency 35231 MHZ . :DTL:Spokes: Medium f ‘: High 3 7‘ T |
' ! ! ! —_—y
4 HEIES

> c: [14,3] mm
> G [14,3] mm
» c: [0.8,28 mm I

RMS size [mm]

u E field? NP i o 300 400

Longitudinal position [m]

m Nature of the tracked ion = residual gas composition?
» Nominal gas composition: H, (79%), CO (10%), CO, (10%), N,, (1%)

= Initial momenta distribution of electrons/ionised molecules?
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Ce2 SC @ ESS: electric field influence &

100

E oo E, = 90 Mev —~-electrons
< " -0, =6 =0 = 2 mm (average beam size in Spoke) | __ H
= Ideally homogeneus E 2
°FParticles emitted at rest
60
50

rms size deformation < 25%

40—
30 / rms size deformation < 4%
20—
10 - —o
- ] ] ] | ] T 1 | ] ] | _'$_ 1 | I I I T T —d) ]
0 200 400 600 800 1000
v Less SCE for H_". E, (kV/m)

v Less SCE for higher electric fields (but if too high, you reverse the trend).
v Much higher HV needed in electron config. to achieve the same as in ion config.
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CQ_ZI SC @ ESS: Initial momenta influence

I

"E E =90 Mev final H;
o %9 "¢ =2mm Entries 10000

— Homogeneus Ey = 300 kV/m Mean 0.02043
400 — Std Dev 2.089

= final e
0" Entries 10000
200 Z_ rms size deformation ~ 88% Mean 0.04215

—  rms size deformation ~ 4% Std Dev 3.764
100 —

[—’2} — 5 ~10 e — 10 B —

X (mm)
v Less SCE for H2+.

F. Belloni CDR - 11" February 2019 Page 39



Electric field homegeneity influence ﬁ

= E
—= 9 =
= - Ep 90 Mev
81— Gx=6y=cz=2mm
7E- Realistic (COMSOL) electric field
==
51
== v The chosen set of resistors create, in such
= a case, a “focusing” electric field, which
SE- opposes to SCE.
2~
=
0 - L L L L | L X1 03

100 300
ECom! (kV/m)
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CCa Lessons learnt from simulations 7O%

TO MINIMIZE THE SCE
® IPM used in ion configuration
® Initial momenta distribution unimportant only for massive ionization products

m High electric field

IF MEASURES TO MINIMIZE THE SCE ARE FOLLOWED,
NO CORRECTION IS NEEDED TO MEET THE L4 ESS
REQUIREMENTS

REMINDER:
the total measurement error in the RMS extension of the beam must amount to less
than £ 10%. (L4 ESS requirement)
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_ Expected SC @ ESS

Test E, E 0. 0y 0. 05 0% IPM 1:Y projection

Cr:i.'[]

particle MeV kV/m mm mm mm mm %
» Proton energies:

Hy 90.0 200 125 125 280 1.285 2.783
Hy 90.0 250 125 125 280 1.273 1.879

H; 90.0 300 125 125 280 1.267 1.355 St_artOfSPOke =90 MeV

Hf 1530 200 1.60 160 220 1.608 0.477 Middle of Spoke = 153 MeV
Hy 153.0 250 1.60 1.60 220 1.602 0.144 End of Spoke =216 MeV
H; 153.0 300 160 1.60 220 1599 -0.084 Middle of MB = 388 MeV
Hf 2160 200 150 150 2.00 1502 0.149 End of MB = 516 MeV
Hg 2160 250 150 150 200 1.498 -0.101 Middle of HB = 1280 MeV
H; 2160 300 150 150 200 1.496 -0.256 End of HB — 2000 MeV/

Hy 388.0 200 125 125 140 1.249 -0.048

Hy 388.0 250 1.25 125 140 1.247 -0.225

Hy 388.0 300 125 125 140 1.246 -0.344

Hy 516.0 2000 1.80 1.80 1.20 1.789 -0.634 » Realistic el. Field

Hy 516.0 250 1.80 1.80 120 1.787 -0.705

Hy 516.0 300 1.80 1.80 120 1.786 -0.757

Hy 12800 200 160 1.60 0.90 1.588 -0.730 > Initial momenta considered
H; 12800 250 1.60 1.60 090 1587 -0.785

H; 12800 300 1.60 1.60 090 1587 -0.828 >
Hj  2000.0 200 2.00 200 0.70 1.983 -0.857

Hy 20000 250 2.00 2.00 0.70 1.982 -0.895

H;  2000.0 300 2.00 2.00 070 1.982 -0.923 » No detector resolution considered

F. Belloni CDR - 11" February 2019 Page 42

Uncertainty on simulations ~ 2%




_ Expected SC @ ESS

Test E E o, o, o s, 2=  |PM2: X projection

il i Ho 0 Tz

particle MeV kV/m mm mm mm mm %
» Proton energies:

Hy 90.0 200 1.26 125 280 1.277 2174
Hy 90.0 250  1.25 125 280 1.269 1.489

Hy  90.0 300 125 125 280 1263 1.025 Start od Spoke =90 MeV
Hy 153.0 200 1.60 1.60 220 1.605 0.310 Middle of Spoke = 153 MeV
Hy 1530 250 1.60 160 220 1600 0.025 End of Spoke =216 MeV
Hy 1530 300 160 160 220 1597 -0.159 Middle of MB = 388 MeV
Hy 2160 200 150 150 2.00 1501 0.056 End of MB — 516 MoV

Hf 2160 250 150 1.50 2.00 1.498 -0.159 . _
Hf 2160 300 150 150 2.00 1.495 -0.311 Middle of HB = 1280 MeV

H; 388.0 200 125 125 140 1249 -0.049 End of HB = 2000 MeV

Hy 3880 250 125 125 140 1247 -0.243
Hy 3880 300 125 125 140 1246 -0.346
H; 5160 200 180 180 120 1788 -0.666 o _
Hy 5160 250 180 180 120 1787 -0738 ~ Realistic el. Field
H; 5160 300 1.80 1.80 120 1786 -0.781

Hy 12800 200 160 160 090 1500 -0.644 3
Hy  1280.0 250 160 160 090 158 -0.720

H; 12800 300 1.60 1.60 0.90 1588 -0.758

Hy 20000 200 200 200 070 1982 -0.913 ) Uncertainty on simulations ~ 2%
Hy 20000 250 200 200 070 1982 -0.924
Hy 20000 300 200 200 070 1981 -0.947

Initial momenta considered

> No detector resolution considered
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Background: on-going simulations
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» File provided by ESS (Yngve) containing , at the quadrupole plane, for each surviving proton:

X, X, V,Y,z 2z, phase, t, E, losses
?

o=r =zl
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Cea Background @ ESS

> Look at particle distribution at the magnet plane (r* = x* + y?)

Spoke MB1 Maz MB3 HE

o
:mm

6 2 @ o 3 w18 0w @
r i) Fmin

5 0 E 30 o 5 10 1% =0 a5 an

» Look at the maximum cos(theta) at which particles are shoot.

» Add r__ from previous slide to the displacement expected at the end of the tube

» Tube radius r = 25 mm

» Tube length L =170 mm
: »h =r +Lsin(theta)
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_ Background @ ESS

SPOKE: h__ =14.6682 mm +2.16039 mm <25 mm | Maximum radius and maximum
MB1 h =24.0782 mm +2.0599 mm > 25 mm angle not correlated (i.e. not

MB2 h _ =23.8285mm +2.14193 mm > 25 mm | found for the same proton),

MB3 h =18.2402 + 1.35979 mm < 25 mm therefore on the left is the worst

HB hmax =13.8893 mm + 1.02233 mm < 25 mm | case scenario in case of correlation

» Implementation of the ESS chamber MCP disks and tube between quadrupole and the
chamber

» GEANT4 Simulations run for the MB2 section. No particle hits the MCPs.

Geometry oversimplified = necessity to run the simulations with more materials
implemented and with other input particles (gammas)
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Final remarks
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C2a Main conclusions

W Read-outs:
> mcp necessary for the ESS beam conditions
> advisable to use mcp + camera since already implemented in EPICS

@ Measurement campaigns:
» Second campaign affected by huge negative signals. On-going
investigations through simulations (collimator? Mylar foils?)

W Space charge effects:
» Necessary to work ion mode
> Advisable to use electric field of 250 kV/m in ion mode
> If electron mode chosen, too high electric field necessary

W Simulations of background
» On-going.
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CZa Conclusions:

THANK YOU FOR YOUR ATTENTION
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Cea SC @ ESS: beam energy influence 79«

"'6‘ 102 —
2 = E =300 kV/im
- — &= d
g B
10 E
1E
electrons: T T— e—
10! —=— 90 MeV T e
--a== 200 MeV v Less SCE for H2+.
— - 1GeV v Less SCE for larger beams.
102 H>: X In reality, for some parameter
—e— 90 MeV combinations, the lower the
--g-- 200 MeV energy the larger the SCE.
—e - 1 GeV
10—3 ] ] ] ] | ] ] ] ] | ] ] ] ]
1 1.5 2 2.5 3



DE LA RECHERCHE A L'INDUSTRIE

cea
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Cea SC @ ESS: initial p influence (1/2): %

GARFIELD++
simulations

Electron speed distribution at creation

- Pressure =1  mbar
o ] Pressure = 10" mbar
10 H Hydrogen Auger Pressure = 10 mbar
= line Pressure = 10° mbar
90 MeV i C
PENCIL - LIKE 10° L
PROTON BEAM g =
E = 300 kV/m : Auger
10" &= O
g Y peak
10° g~ ‘
- (A |
i Nl \l | ” ‘ | \
10cm x10cm x 10 cm z 10° &= | | | | \ } ||‘
0 100 200 300 500 900

residual gas volume
Electron energy (eV)

Electrons:

m Azimuthal angle ¢ uniformly sampled in [0, 21T)
m Emitted preferentially orthogonallv to the z axis
m lonised molecules (assumption): v‘,=%vm



CZa  Working principle and issues:

IPM: lonisation Profile Monitor

m The proton beam ionises the residual gas

e

m E separates e’/ionised molecules

DETECTOR

m Charge collection on read-out

SPACE CHARGE EFFECTS:
HV >0 HV >0

Q" travelling

|
E . E \' ®
, 9astH, i gas: H, along z direction
—
A
X

POSSIBLE CORRECTION METHODS
> Add magnetic field X
> High electric field v/ X

>  Software correction v



Cea Space charge effect estimation: 70%

General idea:

R. Wanzenberg, “Nonlinear

i Q& Motion of a Point charge in the
o ' 3D Space Charge Field of a
&5 - z Gaussian Bunch”
|72=vht -

m A Gaussian bunch with charge Q, is moving with velocity v, along the z-axis in the lab. frame K.

m The bunch is at rest w.r.t. the co-moving frame K.
m The ® generated by Qbis calculated in the co-moving frame — V2®(z, 4, 2) = ——p(z. 7, 2).

m The E field generated by Qbis calculated in the co-moving frame —» g - _vao
m Through Lorentz transformations, the E field in K is translated into an electromagnetic field in K.

Ez b E{E —b J()’b Ey/c ﬁb _Ey
E = Ey = ’Yb,Ey ) B = b ﬁb EE/C = — E;m .
E, E, 0 “\ o

m F= Q/(E +vxB)= acceleration = speed = displacement ... therefore trajectory of Q_in the
elm field generated by Q, .

Remind:

m The Coulomb interaction between the ionisation charges is neglected
(Q >10")

proton bunch ionisation charges —



Cea Space charge effect estimation: 70%

Implementation (ESS core + CEA development & optimisation):

m 10* test particle QO are generated in the center of the IPM [at rest or with momentum]

m The test particles are generated following a Gaussian distribution o , C, and o,
which reflects the beam width along x,y and z

m The test particles are tracked as previously described [External electric field ideally
perfect or COMSOL generated]

m The SCE is given by the difference between the initial and final RMS of the
Q_distribution



>

COMSOL simulations of the El field in the
IPM:

m The value of the resistors was optimized
with COMSOL in order to get the best
electric field uniformity

m Different sets of resistors were chosen

for different potential difference
configurations
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