
nBLM Firmware - Software Interface

Version History

Version Full name & Date Note

0.1 Grzegorz Jaboski , 14 Nov -18 Initial draft

0.5 Grzegorz Jaboski , 11 Jan -19 Update to v0.5

0.6 Wojciech Jamuna, 05-Feb-19 Unification with icBLM documentation

Table of content

Version History
Table of content
Abbreviations
Introduction

Overview
Hardware Platform
IFC1410
AD3110
System model

Firmware description
General Overview
nBLM Overview

AD3110 Support Module
TCSR Registers
TMEM Memory and Mux
PLL and Clock Monitor
Slow Interfaces
PHY FMC
ADC Handler

Low Level Interfaces
Clocking and reset
RTL Verification

Software interfaces
Bit width and number representation
Register map

Directly accessible registers
Overview
DCH_ENABLE (0x9C)
DCH_RESET (0xA0)
CLEAR_OVERFLOW (0xA4)
DATA_COLLECTED (0xA8)
FIFO_EMPTY (0xAC)
DATA_OVERWRITTEN (0xB0)
DATA_OVERFLOW (0xB4)
CBRS (0xC0)
CBRV (0xC4)
AMRS (0xD0)
AMRV (0xD4)
RAW_DATA_SELECTOR (0xD8)
DECIMATOR_PARAMETERS (0xDC)

Circular buffer and framer parameters (register map)
Overview
BASE_ADDR (0x0000)
END_ADDR (0x0001)
BURST_SIZE (0x0002)
DATA_THRESHOLD (0x0003)
LATENCY_THRESHOLD (0x0004)
R_POINTER (0x0005)
W_POINTER (0x0006)
R_POINTER_OVERWRITTEN (0x0007)
GENERATOR_PARAMETERS (0x0008)
SAMPLE_THRESHOLD (0x0009)

Algorithm parameters (register map)
Overview
eventDetection_thr (0x0)
eventDetection_thr2 (0x1)
inverse_of_Q_TOT_single_neutron (0x2)
neutronAmpl_min (0x3)
neutronTOT_min_indx (0x4)
pedestal (0x5)
pileupTOT_start_indx (0x6)
channel_src_select (0x7)
pedestalExcludeEvents (0x8)
pedestal_window_start (0x9)
pedestal_window_length (0xA)
window1_params_loss (0xB)
window2_params_loss (0xC)
window3_params_loss (0xD)
window4_params_loss (0xE)
nominal_trigger_period (0xF)
current_trigger_period (0x10)
single_neutron_count (0x11)
pileup_count (0x12)
all_count (0x13)
background_count (0x14)
window1_params_bcg (0x15)
window2_params_bcg (0x16)
window3_params_bcg (0x17)
window4_params_bcg (0x18)

AD3110 Module Registers
ID (0x80)
RST (0x81)
DELAY_SEL (0x82)
DELAY_VAL (0x83)
DELAY_LOAD (0x84)
PATTERN_MASK (0x85)
CLK_MON0 (0x86)
CLK_MON1 (0x87)
CLK_MON2-5 (0x88- 0x8B)

Data frames
Event Info (CB channels 0-5)
Neutron Count (CB channel 6)
Raw Data (CB channel 7)
Periodic Data (CB channel 8)

Detector-specific Data (INFO = 1)
Loss in 4 user-defined windows (INFO = 2 ... 7)
Loss accumulated in TRP,N (INFO = 8)
Event statistics (INFO = 9 ... 32)
Background event count in 4 user-defined windows (INFO = 33 ... 38)

Interrupts
Firmware usage
Firmware limitations and known issues

Loss of data during simultaneous DMA transfers from both DDR banks
Tsc driver not supporting scatter-gather operations and prone to resource leaks
Problems with PCIe Gen3 link to Concurrent CPU
Readback from algorithm parameters register blocks
No separate interrupt support for both memory banks
Tsc Driver cannot access PON space when run on Concurrent CPU

Abbreviations

BLM Beam Loss Monitor

EPICS Experimental Physics and Industrial Control System

ESS European Spallation Source

FPGA Field Programmable Gate Array

FW FirmWare

MPS Machine Protection System

LLRF Low Level RF

QW Quadword (64 bits)

DQW Double Quadword (128 bits)

Introduction

Overview

The primary goal of the Beam Loss Monitoring (BLM) system is to monitor beam losses of the ESS accelelator and detect abnormal beam
behaviour and promptly inhibut beam production in case of beam failures to keep the machine safe from beam-induced damage. The nBLM
subsystem is a part of this system, based on Micromegas detectors designed to be sensitive to fast neutrons and insensitive to low energy
photons (X– and gamma–rays).

Hardware Platform

The hardware platform for the system is based on uTCA standard. The hardware consists of all elements required by uTCA

uTCA chassis with power supply
mechanical frame with backplane and all connections defined by the
standard together with managed power supply unit

MCH
main management platform for uTCA systems. It executes power-
supply negotiations and provides diagnostic and control information
for all devices in the chassis

and additional custom boards dedicated for actual functionality:

(AMC) Concurrent CPU
x86 based processing platfrom running Linux operating system. It
can access all devices in a chassis using either PCIe or GbE
interface. This is main execution unit for software components of
nBLM/icBLM systems.

IFC1410(AMC)
Kintex Ultrascale FPGA based uTCA FMC carrier equipped with 2
HPC slots and embedded PowerPC system for data readout and
platform management. The PowerPC system can be alternative
place to run all software components of nBLM/icBLM systems.

(FMC) AD3110
FMC extension card used with IFC1410 equipped with 8x ADC 16-
bit @ 250 MSPS

EVR(AMC)
FPGA based timing receiver, which provides timing information for
all other boards in the chassis

In the current configuration, the system is not using any RTM modules.

IFC1410

The IFC1410 is powerful FMC carrier board in uTCA standard. It provides enough high-performance resources to interface to fast ADC modules
and be able to process several 250 MHz data streams. For theses reasons it has been selected as a main processing unit for nBLM and icBLM
implementations. The board is presented in Figure 1.

Figure 1. IFC 1410

Main Features of IFC1410:

FPGA Processing Unit
High performance Xilinx Kintex UltraScale KU040 or KU060 FPGA
1024MB dual channel DDR3L-1066 SDRAM (2x 256M x 16)
Configuration from on-board SPI flash, or with remote configuration file fetched by the processor through Ethernet

Processor Unit
High-performance Freescale/NXP QorIQ T2081 processor, featuring the e6500 power architecture which includes Altivec (was
not available on the P2020 implemented on the IFC_1210)
On-board 2GB DDR3L 1866 SDRAM
Non-volatile boot memories: dedicated 512MBit (64MB) SPI flash
Non-volatile storage memory: dedicated 4Gbit (512MB) NAND flash
Powered by U-Boot/Linux and able to run EPICS-based applications

FMC Interfaces
Dual HPC VITA-57.1-compliant FMC slots
80 LVDS channels
4 differential clocks (CLK0, CLK1, CLK2, CLK3)
1x GTH x4 channel
Programmable VADJ power supply (1.5V – 1.9V)

AMC Interface
Port 0: AMC.2-compliant gigabit Ethernet link with the processor
Ports 4 to 7: AMC.1-compliant PCI express x4 Gen3 link with the FPGA Processing Unit
Ports 12 to 15: point-to-point LVDS links with the FPGA Processing Unit
Ports 17 to 20: shared bus M-LVDS links with the FPGA Processing Unit
Telecom clock TCLKA and TCLKB used for ultra low jitter clock

AD3110

The FMC cars is equipped with 8 250 MHz ADC channels, which perform sampling with 16-bit resolution. The board is presented in Figure 2.

Figure 2. AD3110 Board

Main features of the board are:

Eight (8) channels 16-bit/250Msps ADC
Single width FMC VITA 57.1-2008

HPC 400 pins connector
Ten(10) SSMC front panel connectors
8[W] typical power consumption
FMC 12[V] power supply not required
LVDS high speed interface

Based on latest generation ADC technology
TI ADS42LB69 dual 16-bit/250 Msps
Single ended AC coupling (ADC_3110)
Single ended DC coupling (ADC_3111)
High-speed LVDS data read-out

Sophisticated clock tree distribution
TI LMK4906 (dual PLL)
On-board ultra-low noise oscillator /VCXO
External SSMC Clock reference

On board low noise power supplies generation
FMC 12P0V power supply not used

System model

The C++ implementation of event discrimination algorithm can be found in the Mercurial repository at https://bitbucket.org
/europeanspallationsource/nblm-fw-simtools/src/default/

Firmware description

General Overview

The general structure of the whole FPGA implementation is enforced by TOSCA framework, which provides access channels to PCIe, DDR4
resources and defines interfaces between FMC modules and user logic. Simplified diagram is presented in the Figure 3. The parts implemented

.during icBLM work are marked with green

https://bitbucket.org/europeanspallationsource/nblm-fw-simtools/src/default/
https://bitbucket.org/europeanspallationsource/nblm-fw-simtools/src/default/

Figure 3 Tosca Framework Diagram.

nBLM Overview

The current version of the nBLM is implemented using the IOxOS Tosca . That means that the common resources like PCIe interface Framework
and DDR interfaces are all handled by the framework. Hence, the overview provided covers mainly the custom implementation parts and the
interaction with the framework.

The control registers and algorithm parameters are available on the TCSR interface. All the processing results are stored in two banks of DDR3
memory on the IFC1410 board, logically treated as 14 independent data streams (called channels) and are available to the software via DMA
through the PCI Express interface, both to the internal POWER CPU and the external CPU in MTCA chassis. The data flow diagram in the
system is presented below.

https://confluence.esss.lu.se/display/RFG/AXI-based+FPGA+Framework

Fig. 4 Data flow in a nBLM system.

The key elements of the system are the Data Channel Controllers. The number of these controllers is statically configurable by means of constant
NUM_OF_CHANNELS. Each channel controller is attached to a Framer. For the verification purposes the can be replaced with Framer Dummy
Data Generator. The Data Channel Controllers are connected to Arbiters, which selects the controller from which the data will be transferred to
the DDR3 memory via SMEM Writer and DDR3/SRAM SMEM Controller. For each memory bank separate is used.Arbiter

The Arbiters uses Round-robin scheduling algorithm. When the given channel is selected, the channel_ready flag is asserted and SMEM Writer st
arts the negotiations with the SMEM Controller in order to start the data transfer. When this transfer is completed, SMEM Writer deasserts the in_
progress flag and Arbiter checks if next Data Channel Controller is ready for the transmission.

The state and the most parameters of the Circular Buffer firmware can be checked and modified at run time by means of reads and writes to the
appropriate registers, as it is schematically presented in figure below. The most crucial (from the point of view of system management efficiency)
status and control bits can be accessed directly. The parameters of the system (e.g. base address, end address, etc) and some state variables
(write pointer, read pointer), which do not need such an immediate access, can be read and written indirectly, in two steps. In the first step the
proper parameter or state variable selector must be written to CBRS (Circular Buffer Register Selector) register. Than the selected value can be
read or written through the access to CBRV (Circular Buffer Register Value) register. Such an approach minimizes the usage of limited TCSR
Resources while still allows efficient system management.

The internal architecture of is presented in figure below. Since it interconnects 2 subsystems synchronized by different Data Channel Controller
clocks (250 MHz and 125 MHz), Data Channel Controller is based on 3 FIFOs:

Data FIFO, which except transferring data from one clock domain to another, changes the data width from DQW (Double QW, 16B, 128
bits) to QW (8 B, 64 bits).
Forward Address and Size FIFO, which transfers between clock domains the start addresses and the sizes of the bursts scheduled to be
stored in memory.
Back Address and Size FIFO, which transfers between clock domains the start addresses and the sizes of the bursts already stored in
memory.

The data flow in the is monitored by 2 data counters:Data Channel Controller

Write Data Counter, which counts the bytes inserted into and waiting for the burst scheduling - when the number of these Data FIFO
bytes exceeds assumed level (BURST_SIZE), the new burst is scheduled (i.e. the start address and the size of this burst is inserted into

) and the is decremented (by the size of the burst just scheduled).Forward Address and Size FIFO Write Data Counter
Read Data Counter, which counts the bytes already stored in memory - when the number of these bytes exceeds assumed level
(DATA_THRESHOLD), the interrupt is generated.

The operation of the is also monitored by 2 latency counters:Data Channel Controller

Write Latency Counter, which counts the milliseconds from the last burst scheduling - when the value of this counter exceeds assumed
level (LATENCY_THRESHOLD), the new burst is scheduled, even if the value of Write Data Counter does not exceed the BURST_SIZE.

 is reset if there is no data to be scheduled (= 0) or when the new burst is scheduled.Write Latency Counter Write Data Counter
Read Latency Counter, which counts (in milliseconds) how long the data is waiting in memory for being read by processor - when the
value of this counter exceeds assumed level (LATENCY_THRESHOLD), the interrupt is generated. is reset if Read Latency Counter
there is no data in memory (= 0) or if there is enough data for the interrupt to be generated by the Read Data Counter Read Data Counter
 (>= DATA_THRESHOLD).Read Data Counter

All the FIFOs and counters of Data Channel Controller are managed by Finite State Machine (FSM), which has 5 possible states: WAIT_FOR_RE
controlSET, IN_RESET, WAIT_FOR_NO_RESET, DISABLED, ENABLED. The state of this FSM can be set by means of appropriate writes to re

END_ADDR BURST_SIZE, DATA_THRESHOLD, gisters. The parameters of the Data Channel Controller (BASE_ADDR, ,
LATENCY_THRESHOLD) can be set only, when the Data Channel Controller is disabled (FSM is in DISABLED state, DCH_ENABLE is
deasserted). Furthermore, the reset is required to apply the new values of these parameters. Otherwise these values will be ignored.

The Data Channel Controller can be reset only after it was disabled first. Otherwise the reset command will be ignored. In some situations
disabling the Data Channel Controller can take some time since this controller in the same time can be serviced by the Arbiter and this operation
must be finished before disabling. Therefore, before issuing the reset command it must be checked if the Data Channel Controller is already

controldisabled (deasserting DCH_ENABLE flag by writing to register has not immediate result - this flag is cleared when the channel is really
disabled).

The data in the streams are divided into frames, allowing timestamping and integrity checking. The general structure of the data frame is
presented below:

Fig. 5 Structure of a data frame

The interface width on the writer side is 128 bits, therefore the frame consists of an integer number of 128-bit words. The first word in the frame
contains the following fields:

Start-of-frame pattern (50F50F50F50F50F5)
Timestamp consisting of a serial number of the 1-microsecond algorithm window (MTW INDEX) and the number of the sample within the
window (S). The timestamp can denote the time when data have been generated (in channels 0-7) or time when the data have been
inserted into the buffer (in channel 8)
1 generic information byte (INFO, depending on the data channel)
16-bit number of samples in the frame (SAMPLES)

The payload consists of several data samples, usually having several fields each, packed back-to-back on the bit level without any additional
padding.

The last word in a frame contains a 32-bit CRC of all the previous words in the frame (CRC32) followed by the End-of-frame pattern
(E0FE0FE0FE0FE0FE0FE0FE0F).

By default the frame contains SAMPLE_THRESHOLD samples. If there is no possibility to flush the sample buffer due to lack of available
bandwidth downstream, larger frame size will be used. Latency timer is used in order to prevent holding data in buffer indefinitely. When
LATENCY_THRESHOLD elapses or framer is disabled while the sample buffer is not empty, shorter frame will be sent.

The block diagram of a single algorithm module is presented below:

Fig. 6 Block diagram of a single algorithm module.

The individual algorithm blocks are described in C++ and synthesized using Vivado High Level Synthesis. The main data processing chain, that
operates in pipeline every 125-MHz clock cycle, consists of 5 blocks. As this chain controls the BEAM_PERMIT interlock signal, no stalls are
allowed in the pipeline. The AXI Stream interface is used. Two ADC samples are processed in one clock cycle.

 subtracts pedestal from data samples and perform comparison of the samples with the thresholdPreprocessor:
 identifies "interesting events" and counts ADC saturationsEvent detector:

 delays one event, allowing simultaneous presentation of two subsequent events to the next blockEvent aligner:
 computes the number of neutrons causing "interesting events"Neutron counter:

 produces the summary of neutrons counted within each 1-microsecond processing windowNeutron summarizer:
 generates the BEAM_PERMIT signalInterlock logic (not implemented):

The remaining data processing blocks produce different statistics for archiving and visualization and intermittent stalls, resulting e.g. from the lack
of available DDR3 memory bandwidth, is acceptable.

AD3110 Support Module
To handle ADCs on FMC module, the dedicated component was implemented. It manages all actions related to configuration, data readout and
clock domain crossing. Its structure is presented in the Figure 7.

Figure 7. Structure of PICO4 VHDL Module

The following sections describe individual components of the module.

TCSR Registers

The component is responsible for handling of Tosca TCSR bus used for register access. Its primary operation clock is xuser_CLK (provided by
TOSCA). No clock domain crossing is needed neither on input nor outputs of the module. It allows to configure IODELAYs on idividual data bits,
readout clock monitors and trigger resets and configuration actions.

TMEM Memory and Mux

The module is implementing TMEM memory, which allows to upload test patterns to be used instead of real ADC data. It is connected to Tosca
TMEM bus and operates on two clocks: xuser_CLK to interface with TMEM subsystems and readout clock provided form user logic to interact
with ADC data stream.

PLL and Clock Monitor

The PLL is used to provide clock separation/clean-up between external clock input and internal clocking resources. Clock Monitor module is
measuring clock frequencies of external clock input and all clock provided by ADC chips. The results are provided to TCSR registers.

Slow Interfaces

Slow Interfaces block configures on-board peripherals (external PLL chip and ADC chip) using SPI-like interfaces. It uploads all configuration
registers to achieve desired mode of operation:

PLL chip
clocks for all ADC = 250 MHz
clock for FPGA logic = 125 MHz

ADC chips
configured to operate with DDR interface
test modes disabled

PHY FMC

The module maps interface signals into physical connections on FMC connector (HA, LA and HB Buses). It contains instances of all needed IO
buffers.

ADC Handler

The structure of the module is presented in Figure 8.

Figure 8. Structure of ADC readout block

The 16-bit data bus (channel A and channel B) from each ADC chip is passed through IODELAY logic elements to adjust bus skew caused by
PCB trace delays and internal FPGA routing. The delayed signals are connected to DDR flip-flops clocked by 250 MHz bus clock provided by
ADC. The results of sampling are stored in 2 separate FIFO blocks (one for each channel) with 16 bit inputs, which perform both clock domain
crossing and data stream scaling to 32 bit words (clock decreased to 125 MHz). The output data stream can be read out by user logic using 32-
bit FIFo interface opearted on user provided clock (typical clock is ADC_CLK / 2)

Low Level Interfaces
The following interfaces are present on VHDL level. They must be connected to TOSCA infrastructure or application part (as indicated in a table)

Name Direction Interface Function

xuser_RESET IN TOSCA Reset signal from TOSCA
Infrastructure

xuser_CLK IN TOSCA ~125 MHz clock from TOSCA - its
frequency depends on TOSCA
settings

fmc_TCSR_* IO TOSCA Register Access Bus

fmc_TMEM_IF_* IO TOSCA Memory Access Bus

pad_FMC_* IO HW Connections to on-board FMC slot -
must be directly connected to FPGA
pins

axis_aclk IN APP Read-out clock for user interface

axis_tdata OUT APP Contains 8x 32 bits of data for each
ADC

axis_tvalid OUT APP Indicates that data on axis_tdata is
currently valid

axis_tready IN APP Indicates if APP is ready to receive
data (FIFO interface)

p_o_clk_adc OUT APP Output Clock which can be used by
APP - provided by external PLL (125
MHz)

Clocking and reset

.The nBLM custom logic has three clock domains

ADC_CLK, the 125 MHz clock controlling the ADCs on the 3110 FMC. All the data processing algorithms are operating using this clock
TOSCA_CLK125, the 122 MHz clock defined by the Tosca framework. The register control logic and part of circular buffer controllers
use this clock
TOSCA_CLK250, the 275 MHz clock defined by the Tosca framework. It is used by the part of circular buffer controller interfacing to the
SMEM Direct interface

There is one software reset in the domain of ADC_CLK, controlled by one of the TCSR registers.

The clock domain crossing between the ADC_CLK and TOSCA_CLK_125 take place inside framers and register block controllers.

RTL Verification

The testbenches are located in the sim directory. They require Questa simulator.

Before running any of the testbenches, you have to execute compile_all.do script. simulate_top.do simulates the entire project, including the
PCIe register interface. There are also testbenches for individual modules.

Software interfaces

Bit width and number representation

All signals in the custom logic implementation are digital binary signals. To represent other values than binary, two or more binary signals are
combined into one value. The number of binary signals used to represent a value is referred to as bits.

Value representation is by default unsigned integer numbers. Values that contain signed or fractional values will be marked with a Signed
 or . All signed numbers are using two’s complement number representation.(int_bits, frac_bits) Unsigned(int_bits, frac_bits)

Examples:
 0x7FFF0000 Signed(16,16) => 32767.0 decimal
 0x80000000 Signed(16,16) => -32768.0 decimal
 0xFFFF0000 Signed(16,16) => -1.0 decimal
 0xFFFF8000 Signed(16,16) => -0.5 decimal
 0xFFFF0000 Unsigned(32,0) => 4294901760 decimal
 0x0000C000 Signed(16,16) => 0.75 decimal

Register map

Registers can be accessed in four different ways, as shown in the table below.

Access method Abbreviation Function

Read R Read 32-bits, where bits exceeding the size
of the register are filled with zeroes.

Write W Write 32-bits, where bits exceeding the size
of the register are ignored.

Set S Set 32-bits, where bits exceeding the size of
the register are ignored. Writing to the set
interface of a register will change the value
of the register to one for all bits that are one
in the write and leave the rest of the bits as
they were, i.e. New_Reg_val =
Old_Reg_val or Write_val.

Clear C Clear 32-bits, where bits exceeding the size
of the register are ignored. Writing to the
clear interface of a register will change the
value of the register to zero for all bits that
are one in the write and leave the rest of the
bits as they were, i.e. New_Reg_val =
Old_Reg_val and not(Write_val).

Directly accessible registers

Overview

Offset
(base = 0x100)

Register Access Shadow
register

Function

0x98 IRQ_ENABLE R/W No Enable interrupts from Data Channel Controllers

0x9C DCH_ENABLE R/W No Enable Data Channel Controllers

0xA0 DCH_RESET R/W No Reset Data Channel Controllers

0xA4 CLEAR_OVERFLOW W No Clear overflow flags

0xA8 DATA_COLLECTED R No data collected flagsData Channel Controller

0xAC FIFO_EMPTY R No FIFO empty flagsData Channel Controller

0xB0 DATA_OVERWRITTEN R No data overwritten flagsData Channel Controller

0xB4 DATA_OVERFLOW R No data overflow flagsData Channel Controller

0xB8 RESERVED

0xBC RESERVED

0xC0 CBRS R/W No Circular Buffer Register Selector

0xC4 CBRV R/W No Circular Buffer Register Value

0xD0 AMRS R/W No Algorithm Module Register Selector

0xD4 AMRV R/W No Algorithm Module Register Value

0xD8 RAW_DATA_SELECTOR R/W No Selector of raw data source

0xDC DECIMATOR_PARAMETERS R/W No Raw data decimator period and duty cycle

DCH_ENABLE (0x9C)

Command for : enable.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) Writing '1' on given position enables
corresponding .Data Channel Controller

For data consistency reasons, disabling Data
 is blocked if the data Channel Controller

transfer from this controller is in progress.
Thus, writing '0' on given position does not
immediately disable corresponding Data

. This operation is Channel Controller
postponed until the potential data transfer
from this controller is finished.

Register default (32-bits): 0x00000000

 Back to register map overview

DCH_RESET (0xA0)

Command for : reset.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) Writing '1' on given position resets
corresponding .Data Channel Controller

For data consistency reasons this command
is ignored when the controller is enabled. In
order to reset the it Data Channel Controller,
must be disabled first.

Register default (32-bits): 0x00000000

 Back to register map overview

CLEAR_OVERFLOW (0xA4)

Command for : clear overflow flags.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) Writing '1' on given position clears
corresponding flag in DATA_OVERFLOW
register.

Register default (32-bits): 0x00000000

 Back to register map overview

DATA_COLLECTED (0xA8)

State of : data collected flags.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) '1' on i-th position means that the required
(specified by DATA_THRESHOLD register
for i-th data channel) amount of data was
transferred to DDR3 memory via DDR3

./SRAM SMEM Controller

The amount of data collected in memory for
i-th data channel is calculated using
corresponding W_POINTER and
R_POINTER registers. If this amount is
grater than DATA_THRESHOLD for i-th
channel, appropriate DATA_COLLECTED
flag is set and also the interrupt is generated
(if enabled by IRQ_ENABLE register). If the
DATA_THRESHOLD is set to 0, each burst
issued to geDDR3/SRAM SMEM Controller
nerates the interrupt and sets the
appropriate DATA_COLLECTED flag.

The flag is cleared automatically when the
amount of unread data in DDR3 memory is
reduced below the DATA_THRESHOLD (i.
e. when R_POINTER is appropriately
modified).

Register default (32-bits): 0x00000000

 Back to register map overview

FIFO_EMPTY (0xAC)

State of : FIFO empty flags.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) '1' on i-th position means that the output
FIFO of i-th has no Data Channel Controller
data to be transferred to the DDR3 memory
via .DDR3/SRAM SMEM Controller

Register default (32-bits): 0x00000000

 Back to register map overview

DATA_OVERWRITTEN (0xB0)

State of : data overwritten flags.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) '1' on i-th position means that the data
collected by i-th Data Channel Controller
was overwritten. These flags can be cleared
by reading corresponding
R_POINTER_OVERWRITTEN register.

Register default (32-bits): 0x00000000

 Back to register map overview

DATA_OVERFLOW (0xB4)

State of : data overflow flags.Data Channel Controller

Default Value Function

13-0 0x0000 unsigned(14,0) '1' on i-th position means that the data
overflow was detected by i-th Data Channel

These flags can be cleared by Controller.
writing corresponding CLEAR_OVERFLOW
register.

Register default (32-bits): 0x00000000

 Back to register map overview

CBRS (0xC0)

Due to the limited register addressing capabilities, the algorithm parameters for specific data processing channels are set in two steps. First, the
specific register and channel has to be selected by writing to the AMRS register. Then the selected register is accessible via the AMRV register.

Default Value Function

31-16 0x0000 Selects the data channel (0-8)

15-0 0x0000 Selects the specific register (it is an 'Index'
in table)Circular buffer parameters

Register default (32-bits): 0x00000000

 Back to register map overview

CBRV (0xC4)

Due to the limited register addressing capabilities, the algorithm parameters for specific data processing channels are set in two steps. First, the
specific register and channel has to be selected by writing to the AMRS register. Then the selected register is accessible via the AMRV register.

Default Value Function

31-0 0x0000 Depends on the value of the CBRS register

Register default (32-bits): 0x00000000

 Back to register map overview

AMRS (0xD0)

Due to the limited register addressing capabilities, the algorithm parameters for specific data processing channels are set in two steps. First, the
specific register and channel has to be selected by writing to the AMRS register. Then the selected register is accessible via the AMRV register.

Default Value Function

31-16 0x0000 Selects the data processing channel (0-5)

15-0 0x0000 Selects the specific register

Register default (32-bits): 0x00000000

 Back to register map overview

AMRV (0xD4)

Due to the limited register addressing capabilities, the algorithm parameters for specific data processing channels are set in two steps. First, the
specific register and channel has to be selected by writing to the AMRS register. Then the selected register is accessible via the AMRV register.

Default Value Function

31-0 0x0000 Depends on the value of the AMRS register

Register default (32-bits): 0x00000000

 Back to register map overview

RAW_DATA_SELECTOR (0xD8)

Selector of raw data source.

Default Value Function

2-0 0x0 unsigned(3,0) Data source for CB channel 8

5-2 0x0 unsigned(3,0) Data source for CB channel 9

8-6 0x0 unsigned(3,0) Data source for CB channel 10

11-9 0x0 unsigned(3,0) Data source for CB channel 11

14-12 0x0 unsigned(3,0) Data source for CB channel 12

17-13 0x0 unsigned(3,0) Data source for CB channel 13

Register default (32-bits): 0x00000000

 Back to register map overview

DECIMATOR_PARAMETERS (0xDC)

Parameters of raw data decimator.

Default Value Function

31-16 0x0000 unsigned(16,0) Value (in us) of decimator period
(DECIMATOR_PERIOD).

15-0 0x0000 unsigned(16,0) Time (in us) for which the decimator enables
raw data framer (DECIMATOR_DUTY).

Decimator enables raw data framer for
DECIMATOR_DUTY us, every DECIMATOR
_PERIOD us.

Register default (32-bits): 0x00000000

 Back to register map overview

Circular buffer and framer parameters (register map)

Overview

Index Register Access Shadow register Function

0x0000 BASE_ADDR R/W No The address of the first
DDR3 page to store the data.

0x0001 END_ADDR R/W No The address of the DDR3
page that follows the last
page to store the data.

0x0002 BURST_SIZE R/W No Preferred burst size.

0x0003 DATA_THRESHOLD R/W No The amount of data to be
announced when collected.

0x0004 LATENCY_THRESHOLD R/W No The time after which the
new transfer should be
scheduled.

0x0005 R_POINTER R/W No Read pointer.

0x0006 W_POINTER R No Write pointer.

0x0007 R_POINTER_OVERWRITTEN R No Pointer to overwritten
memory.

0x0008 GENERATOR_PARAMETE
RS

R/W No Generator data rate
multiplier and divider.

0x0009 SAMPLE_THRESHOLD R/W No Number of samples in frame.

 Back to register map overview

BASE_ADDR (0x0000)

Data channel controller parameter: base address.

Default Value Function

28-12 0x00000 unsigned(17,0) The address of the first DDR3 page to store
the data.

It is aligned to 4kB page boundary (bits 11-0
are ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

END_ADDR (0x0001)

Data channel controller parameter: end address.

Default Value Function

28-12 0x00000 unsigned(17,0) The address of the DDR3 page that follows
the last page to store the data.

It is aligned to 4kB page boundary (bits 11-0
are ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

BURST_SIZE (0x0002)

Data channel controller parameter: burst size.

Default Value Function

11-4 0x00 unsigned(8,0) Preferred burst size. It will be used under
the condition that the transfer does not
cross the DDR3 page, the data overflow
was not detected and
LATENCY_THRESHOLD did not elapse.

It is aligned to DQW boundary (bits 3-0 are
ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

DATA_THRESHOLD (0x0003)

Data channel controller parameter: data threshold.

Default Value Function

28-4 0x0000000 unsigned(25,0) The amount of data (in B) which - when
collected in DDR3 memory - should
generate the interrupt and set the
appropriate DATA_COLLECTED flag in
CBS register. if DATA_THRESHOLD is set
to 0, each burst generates the interrupt and
sets the appropriate DATA_COLLECTED
flag.

It is aligned to DQW boundary (bits 3-0 are
ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

LATENCY_THRESHOLD (0x0004)

Data channel controller and framer parameter: latency threshold.

Default Value Function

1.

2.

15-0 0x0000 unsigned(16,0) For Data Channel Controller:

Time (in ms) elapsed (from the previous
transfer) after which the new transfer should
be scheduled, even if there is not enough
data for nominal (determined by means of
BURST_SIZE and DATA_THRESHOLD)
transfer. Two independent timers control the
appropriate transfers:

Write latency timer controls the time
after which the data (if present in
FIFO) should be scheduled for
writing to memory. Such scheduling
does not generate an interrupt.
Read latency timer controls the time
after which the data (if present in
memory) should be read by
processor. When this timer reaches
the LATENCY_THRESHOLD value,
an interrupt is generated and an
appropriate DATA_COLLECTED
flag is set.

Both timers are limited by the same
LATENCY_THRESHOLD.

When LATENCY_THRESHOLD is 0, no
time-driven transfers are scheduled (the
data for full burst must be collected for the
new transfer to be scheduled).

For Framer:

Time (in ms) elapsed from the previous
transfer after which the new transfer should
be scheduled, even if there is less than SAM

 samples accumulated in PLE_THRESHOLD
buffer.

When LATENCY_THRESHOLD is 0, no
time-driven transfers are scheduled (the
data for full frame must be collected for the
new transfer to be scheduled).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

R_POINTER (0x0005)

Data channel controller parameter: read pointer.

Default Value Function

28-4 0x0000000 unsigned(25,0) The pointer to the DDR3 memory region
that follows the one which was already read
and can be overwritten (the pointer to the
first word (DQW) which was not read yet).

It is aligned to DQW boundary (bits 3-0 are
ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

W_POINTER (0x0006)

Data channel controller parameter: write pointer.

Default Value Function

28-4 0x0000000 unsigned(25,0) The pointer to the DDR3 memory region
that follows the one which was already
written and can be read (the pointer to the
memory which will be written during next
transfer).

It is aligned to DQW boundary (bits 3-0 are
ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

R_POINTER_OVERWRITTEN (0x0007)

Data channel controller parameter: overwritten memory.pointer to

Default Value Function

28-4 0x0000000 unsigned(25,0) The value of R_POINTER register for which
the part of the memory was overwritten.

It is aligned to DQW boundary (bits 3-0 are
ignored).

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

GENERATOR_PARAMETERS (0x0008)

Data channel controller parameters: generator data rate multiplier and divider.

Default Value Function

31-24 0x00 unsigned(8,0) Generator data rate multiplier (GENERATOR
.)_MULTIPLIER

23-0 0x000000 unsigned(24,0) Generator data rate divider (GENERATOR_
).DIVIDER

Data generator produces
GENERATOR_MULTIPLIER words (DQWs)
every GENERATOR_DIVIDER clock cycles.

E.g.: when GENERATOR_MULTIPLIER = 1
and GENERATOR_DIVIDER = 3, only 1
DQW is generated every 3 clock cycles.
When GENERATOR_MULTIPLIER >=
GENERATOR_DIVIDER, 1 DQW is
generated every clock cycle.

If GENERATOR_MULTIPLIER = 0 or
GENERATOR_DIVIDER = 0, generator is
disabled (other data source is used, see Dat

).a flow in a nBLM system

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

SAMPLE_THRESHOLD (0x0009)

Framer parameter: .number of samples in frame

Default Value Function

15-0 0x0000 unsigned(16,0) Nominal . If number of samples in frame
there is no possibility to flush the sample
buffer due to lack of available bandwidth
downstream, larger frame size will be used.
When LATENCY_THRESHOLD elapses or
framer is disabled while the sample buffer is
not empty, shorter frame will be sent.

Register default (32-bits): 0x00000000

 Back to circular buffer and framer parameters

Algorithm parameters (register map)

Overview

Index Register Access Shadow
register

Function

0x00 eventDetection_thr R/W No Event detection threshold 1

0x01 eventDetection_thr2 R/W No Event detection threshold 2

0x02 inverse_of_Q_TOT_single_n
eutron

R/W No Inverse of Q_TOT
corresponding to a single
neutron count multiplied by
100

0x03 neutronAmpl_min R/W No Minimum amplitude of an
event to consider it as a
neutron event

0x04 neutronTOT_min_indx R/W No Minimum Time-over-
threshold of an event to
consider it as a neutron
event.

0x05 pedestal R/W No Pedestal used for neutron
detection

0x06 pileupTOT_start_indx R/W No Minimum Time-over-
threshold of an event to
consider it as a pile-up event.

0x07 channel_src_select R/W No Channel data source:

0x08 pedestalExcludeEvents R/W No Does pedestal computation
include events

0x09 pedestal_window_start R/W No Start of pedestal
computation window

0x0A pedestal_window_length R/W No Length of pedestal
computation window

0x0B window1_params_loss R/W No Start and length of window 1
for loss waveform

0x0C window2_params_loss R/W No Start and length of window 2
for loss waveform

0x0D window3_params_loss R/W No Start and length of window 3
for loss waveform

0x0E window4_params_loss R/W No Start and length of window 4
for loss waveform

0x0F nominal_trigger_period R/W No Nominal simulated trigger
period

0x10 current_trigger_period R/W No Current simulated trigger
period

0x11 single_neutron_count R/W No Number of single neutron
events used for
event statistics

0x12 pileup_count R/W No Number of pile-up events
used for event statistics

0x13 all_count R/W No Number of events used for
all event statistics

0x14 background_count R/W No Number of events used for
background event statistics

0x15 window1_params_bcg R/W No Start and length of window 1
for background event charge
waveform

0x16 window2_params_bcg R/W No Start and length of window 2
for background event charge
waveform

0x17 window3_params_bcg R/W No Start and length of window 3
for background event charge
waveform

0x18 window4_params_bcg R/W No Start and length of window 4
for background event charge
waveform

 Back to register map overview

eventDetection_thr (0x0)

Event detection parameter: Event detection threshold 1

Default Value Function

16-0 0x00000 signed(17,0) Event detection threshold 1

Register default (32-bits): 0x00000000

 Back to algorithm parameters

eventDetection_thr2 (0x1)

Event detection parameter: Event detection threshold 2

Default Value Function

16-0 0x00000 signed(17,0) Event detection threshold 2

Register default (32-bits): 0x00000000

 Back to algorithm parameters

inverse_of_Q_TOT_single_neutron (0x2)

Neutron counting parameter: Inverse of Q_TOT corresponding to a single neutron count multiplied by 100

Default Value Function

31-0 0x00000000 unsigned(0, 31) Inverse of Q_TOT corresponding to a
single neutron count multiplied by 100

Register default (32-bits): 0x00000000

 Back to algorithm parameters

neutronAmpl_min (0x3)

Event detection parameter: Minimum amplitude of an event to consider it as a neutron event

Default Value Function

16-0 0x00000 signed(17, 0) Minimum amplitude of an event to consider
it as a neutron event

Register default (32-bits): 0x00000000

 Back to algorithm parameters

neutronTOT_min_indx (0x4)

Event detection parameter: Minimum Time-over-threshold of an event to consider it as a neutron event.

Default Value Function

15-0 0x00000 unsigned(16, 0) Minimum Time-over-threshold of an event to
consider it as a neutron event.

Register default (32-bits): 0x00000000

 Back to algorithm parameters

pedestal (0x5)

Event detection parameter: pedestal used for neutron detection

Default Value Function

15-0 0x0000 unsigned(16, 0) Pedestal used for neutron detection

Register default (32-bits): 0x00000000

 Back to algorithm parameters

pileupTOT_start_indx (0x6)

Event detection parameter: Minimum Time-over-threshold of an event to consider it as a pile-up event.

Default Value Function

15-0 0x0000 unsigned(16, 0) Minimum Time-over-threshold of an event to
consider it as a pile-up event.

Register default (32-bits): 0x00000000

 Back to algorithm parameters

channel_src_select (0x7)

Event detection parameter: data source for the algorithm.

Default Value Function

1-0 0x0 unsigned(2, 0) Channel data source:

0 - ADC channel number = data processing
channel number

1 - ADC channel number = data processing
channel number + 1

2 - ADC channel number = data processing
channel number + 2

3 - reference data from dummy data
generator

Register default (32-bits): 0x00000000

 Back to algorithm parameters

pedestalExcludeEvents (0x8)

Pedestal computation parameter: does pedestal computation include events

Default Value Function

0-0 0x0 unsigned(1, 0) Does pedestal computation include events

Register default (32-bits): 0x00000000

 Back to algorithm parameters

pedestal_window_start (0x9)

Pedestal computation parameter: start of pedestal computation window, should be even

Default Value Function

24-0 0x0000000 unsigned(25, 0) Start of pedestal computation window,
should be even

Register default (32-bits): 0x00000000

 Back to algorithm parameters

pedestal_window_length (0xA)

Pedestal computation parameter: length of pedestal computation window, should be even

Default Value Function

24-0 0x1FFFF unsigned(25, 0) Length of pedestal computation window, should be even

Register default (32-bits): 0xFFFFFFFF

 Back to algorithm parameters

window1_params_loss (0xB)

Loss waveform parameter: parameters of window 1

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 1

29-20 0x000 unsigned(10,0) Length of window 1

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window2_params_loss (0xC)

Loss waveform parameter: parameters of window 2

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 2

29-20 0x000 unsigned(10,0) Length of window 2

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window3_params_loss (0xD)

Loss waveform parameter: parameters of window 3

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 3

29-20 0x000 unsigned(10,0) Length of window 3

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window4_params_loss (0xE)

Loss waveform parameter: parameters of window 4

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 4

29-20 0x000 unsigned(10,0) Length of window 4

Register default (32-bits): 0x00000000

 Back to algorithm parameters

nominal_trigger_period (0xF)

Nominal trigger period in 125 MHz clock cycles

Default Value Function

31-0 0x000004E2 unsigned(32, 0) Nominal trigger period

Register default (32-bits): 0x000004E2

 Back to algorithm parameters

current_trigger_period (0x10)

Current trigger period in 125 MHz clock cycles

Default Value Function

31-0 0x000004E2 unsigned(32, 0) Current trigger period

Register default (32-bits): 0x000004E2

 Back to algorithm parameters

single_neutron_count (0x11)

Number of single neutron events used for event statistics

Default Value Function

13-0 0x00000 unsigned(14, 0) Number of single neutron events used for
event statistics

Register default (32-bits): 0x00000000

 Back to algorithm parameters

pileup_count (0x12)

Number of pile-up events used for event statistics

Default Value Function

13-0 0x00000 unsigned(14, 0) Number of pile-up events used for event statistics

Register default (32-bits): 0x00000000

 Back to algorithm parameters

all_count (0x13)

Number of events used for all event statistics

Default Value Function

13-0 0x00000 unsigned(14, 0) Number of events used for all event statistics

Register default (32-bits): 0x00000000

 Back to algorithm parameters

background_count (0x14)

Number of events used for background event statistics

Default Value Function

13-0 0x00000 unsigned(14, 0) Number of events used for background event statistics

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window1_params_bcg (0x15)

Background event waveform parameter: parameters of window 1

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 1

29-20 0x000 unsigned(10,0) Length of window 1

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window2_params_bcg (0x16)

Background event waveform parameter: parameters of window 2

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 2

29-20 0x000 unsigned(10,0) Length of window 2

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window3_params_bcg (0x17)

Background event waveform parameter: parameters of window 3

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 3

29-20 0x000 unsigned(10,0) Length of window 3

Register default (32-bits): 0x00000000

 Back to algorithm parameters

window4_params_bcg (0x18)

Background event waveform parameter: parameters of window 4

Default Value Function

19-0 0x00000 unsigned(20, 0) Start of window 4

29-20 0x000 unsigned(10,0) Length of window 4

Register default (32-bits): 0x00000000

 Back to algorithm parameters

AD3110 Module Registers

Offset
(base =)

Register Access Function

0x80 ID R/W ID register

0x81 RST R/W Reset register

0x82 DELAY_SEL R/W Select bus bits for programing

0x83 DELAY_VAL R/W Set delay value

0x84 DELAY_LOAD R/W Load delay to specific channels

0x85 PATTERN_MASK R/W MUX control

0x86 CLK_MON0 R Clock Monitor Channel 0 - xuser_CLK

0x87 CLK_MON1 R Clock Monitor Channel 1 - FMC CLK

0x88 CLK_MON2 R Clock Monitor Channel 2 - ADC0 CLK

0x89 CLK_MON3 R Clock Monitor Channel 3 - ADC1 CLK

0x8A CLK_MON4 R Clock Monitor Channel 4 - ADC2 CLK

0x8B CLK_MON5 R Clock Monitor Channel 5 - ADC3 CLK

ID (0x80)

ID of the FMC module

Default Value Function

31-0 0xDEADBEE1 The register contains ID of the FMC module.
It can be used to verify if proper FW is
present in FPGA.

Register default (32-bits): 0xDEADBEE1

RST (0x81)

Control of Reset Signal for all submodules

Default Value Function

0 0 '0' - slow config in reset state

'1' - triggers slow config module

1 0 '0' - ADC modules in reset state

'1' - ADC modules in normal mode

2 0 '0' - output fifo disabled

'1' - normal operation of output fifo

Register default (32-bits): 0x00000000

DELAY_SEL (0x82)

Selection of bits for delay config

Default Value Function

7-0 0x0000 bit-mask to select, which bits will be set on
bus A of specific ADC chip

15-8 0x0000 bit-mask to select, which bits will be set on
bus B of specific ADC chip

Register default (32-bits): 0x00000000

DELAY_VAL (0x83)

Value of the delay to be loaded to specific bits.

Default Value Function

8-0 000000000 Value of the delay in TAPS from 0 to 511

Register default (32-bits): 0x00000000

DELAY_LOAD (0x84)

Trigger load action

Default Value Function

3-0 0000 bit mask to trigger load action:

bit mask selects ADC chips
DELAY_VAL is loaded to bits selected by
DELAY_SEL

Register default (32-bits): 0x00000000

PATTERN_MASK (0x85)

Control of the mux for individual ADC channels

Default Value Function

3-0 0000 each bit of the register corresponds to single
ADC channel:

'0' - normal operation - ADC data is passed
to module output

'1' - pattern memory is routed to module
output

Register default (32-bits): 0x00000000

CLK_MON0 (0x86)

Output 0 of clock monitor

Default Value Function

31-0 0x00000000 Supplies measured frequency of channel 0
of clock monitor module. In this case
xuser_CLK is used as both reference and
channel 0, so it will always report 122000000

Register default (32-bits): 0x00000000

CLK_MON1 (0x87)

Output 1 of clock monitor

Default Value Function

31-0 0x00000000 Supplies measured frequency of channel 1
of clock monitor module. It is connected to
FMC clock.

Register default (32-bits): 0x00000000

CLK_MON2-5 (0x88- 0x8B)

Output 2-5 of clock monitor

Default Value Function

31-0 0x00000000 Supplies measured frequency of channel 2-
5 of clock monitor module. They are
connected to clocks from ADC chips.

Register default (32-bits): 0x00000000

Data frames

The structure of data frames in circular buffers is presented in Fig. 2. The meaning of INFO field and SAMPLES field depends on type of data
frame. For CB channels 0-7, if the most significant bit of INFO field is set, it means the data after current frame is lost due to lack of DDR memory
bandwidth or inefficient arbitration. For CB channel 8 (periodic data) the loss of data is not indicated in any way.

Event Info (CB channels 0-5)

INFO: data channel

SAMPLES: number of 120-bit event structures, packed back-to-back into a frame

Event structure in order of appearance in data stream:

MTWindx (unsigned, 32 bits)
Q_TOT (signed, 26 bits)
TOT (unsigned, 9 bits)
TOTlimitReached (bool, 1 bit)
TOTstartTIme (unsigned, 9 bits)
TOTvalid (bool, 1 bit)
isPart2 (bool, 1 bit)
peakTIme (unsigned, 9 bits)
peakValid (bool, 1 bit)
peakValue (signed, 17 bits)
pileUp (bool, 1 bit)
serialNumber (unsigned, 13 bits)

Neutron Count (CB channel 6)

Neutron count and other data summarized every MTW period (1 microsecond)

INFO: data channel of the first structure in the frame. The structures are put in the descending order of the channel number (5,4,3,2,1,0,5,4, ...)

SAMPLES: number of 64-bit structures in the frame

Neutron count structure in order of appearance in data stream:

n - number of neutrons obtained by the counting method (unsigned, 8 bits)
q_n - number of neutrons obtained by the charge method multiplied by 100 (unsigned, 32 bits)
negative_saturations - number of negative ADC saturations (unsigned, 8 bits)
positive_saturations - number of positive ADC saturations (unsigned, 8 bits)
background_charge - charge of background events (unsigned, 26 bits)

Raw Data (CB channel 7)

Raw samples from on of the channels

INFO: data channel

SAMPLES: number of 32 bit sample pairs

The least significant 16 bits of the sample pair is the earlier (even-numbered) sample, the 16 most significant bits constitute the later (odd-
numbered) sample.

Periodic Data (CB channel 8)

SAMPLES: number of 128-bit words in a frame

INFO: determines type of periodic data

Detector-specific Data (INFO = 1)

Sample statistics for the last T period, for all 6 channels (5 ... 0), can be used to compute pedestal and RMS noiseRP,N

The structure of data for a single channel, repeated 6 time in a frame, is as follows:

number of samples (unsigned, 25 bits)
sum of samples (unsigned, 41 bits)
sum of squares of samples (unsigned, 57 bits)
number of negative saturations (unsigned, 25 bits)
number of positive saturations (unsigned, 25 bits)

Loss in 4 user-defined windows (INFO = 2 ... 7)

Total neutron counts obtained using two methods (counting and charge) multiplied by 100 in 4 user-defined windows, for channels 0...5
respectively, can be used to compute loss

The structure of data in a frame is as follows

position of window 4 (unsigned 20 bits)
position of window 3 (unsigned 20 bits)
position of window 2 (unsigned 20 bits)
position of window 1 (unsigned 20 bits)
number of samples in window 4 divided by 4 (10 bits)
number of samples in window 3 divided by 4 (10 bits)
number of samples in window 2 divided by 4 (10 bits)
number of samples in window 1 divided by 4 (10 bits)
total number of samples divided by 4 (16 bits)
32-bit unsigned samples, from window 1, then window 2, then window 3, then window 4

Loss accumulated in T (INFO = 8)RP,N

Total neutron count obtained using two methods (counting and charge) multiplied by 100 in the last T period for all 6 channels (5 ... 0), can RP,N
be used to compute loss

The structure of data in a frame is as follows:

neutron count for channel 5 (unsigned 49 bits)
neutron count for channel 4 (unsigned 49 bits)
neutron count for channel 3 (unsigned 49 bits)
neutron count for channel 2 (unsigned 49 bits)
neutron count for channel 1 (unsigned 49 bits)
neutron count for channel 0 (unsigned 49 bits)

Event statistics (INFO = 9 ... 32)

Event statistics in all channels for different types of events. Can be used to compute average and variance of different parameters. Beware of
 The example code is probably correct in this respect.integer overflow and loss of precision in integer - floating point conversion!

Channel number - (INFO - 9) modulo 6

Channel type - depending on (INFO - 9) div 4, respectively single neutron events, pileup events, all events, background events

The structure of data in a frame is as follows:

peakTime - maximum (unsigned 9 bits)
peakTime - minimum (unsigned 9 bits)
peakTime - sum of squares (unsigned 32 bits)
peakTime - sum (unsigned 23 bits)
TOT - maximum (unsigned 9 bits)
TOT - minimum (unsigned 9 bits)
TOT - sum of squares (unsigned 32 bits)
TOT - sum (unsigned 23 bits)
peakValue - maximum (signed 17 bits)
peakValue - minimum (signed 17 bits)
peakValue - sum of squares (unsigned 48 bits)
peakValue - sum (signed 31 bits)
Q_TOT - maximum (signed 26 bits)
Q_TOT - minimum (signed 26 bits0
Q_TOT - sum of squares (unsigned 66 bits)
Q_TOT - sum (signed 40 bits)
count of events (unsigned 14 bits)

Background event count in 4 user-defined windows (INFO = 33 ... 38)

Background event charge in 4 user-defined windows, for channels 0...5, respectively.

The structure of data in a frame is as follows:

position of window 4 (unsigned 20 bits)
position of window 3 (unsigned 20 bits)
position of window 2 (unsigned 20 bits)
position of window 1 (unsigned 20 bits)
number of samples in window 4 divided by 4 (10 bits)
number of samples in window 3 divided by 4 (10 bits)
number of samples in window 2 divided by 4 (10 bits)
number of samples in window 1 divided by 4 (10 bits)
total number of samples divided by 4 (16 bits)
32-bit unsigned samples, from window 1, then window 2, then window 3, then window 4

Interrupts

The design implements a single data ready interrupt, however it is currently unsupported by software.

Firmware usage

Board tests
The program to test the board operation and perform data acquisition can be found in the sw/blm_driver subdirectory.

Usage example:

./mem_dma_reader_tsc -c <bitmask> -b 2048 -e 10 -c 3

<bitmask> allows enabling individual channels

bits 0-5 - event channels

bit 6 - neutron summary from every channel every microsecond

bit 7 - periodic data

bits 8-13 - raw data

Firmware limitations and known issues

Loss of data during simultaneous DMA transfers from both DDR banks

There is a bug in the TOSCA firmware or device driver causing data loss when the DMA transfer is performed simultaneously from two different
memory banks using different DMA channels from different threads. The workaround is protections of the DMA transfer function in the userspace
program by mutex, but this solution reduces performance.

Tsc driver not supporting scatter-gather operations and prone to
resource leaks
Tsc driver has high performance, but requires allocation of contiguous physical memory buffers for operation. When memory is fragmented, it is
not possible to allocate these memory buffers and a CPU reboot is required. Tosca driver did not have this problem, but it offered much lower
performance.

These memory buffers have to be manually allocated and are not freed automatically when the device file is closed. It requires appropriate signal
handlers in the userspace program to avoid resource leaks.

Problems with PCIe Gen3 link to Concurrent CPU
The PCIe link speed between Concurrent CPU and the IOxOS board alternates between Gen1 and Gen3 after each system reboot.

Readback from algorithm parameters register blocks
Readback from algorithm parameters block does not work. It is a firmware issue and will be fixed.

No separate interrupt support for both memory banks
Only one interrupt, common for both memory banks, is supported. It is a firmware issue and will be fixed.

Tsc Driver cannot access PON space when run on Concurrent CPU

TscMon (and custom software applications) fail to access registers placed on PON configuration space (such as Power On for FMC cards)
when run on Concurrent CPU. The same software and TscMon commands can be successfully run on embedded IFC1410 processor. The bug
prevents proper behaviour of the software when only one PCIe endpoint (to Concurrent) is present in the design.

	nBLM Firmware - Software Interface

