Standard Shielding Project Neutronics

Phil Bentley

European Spallation Source

30th January, 2019

Neutronics Requirements

Prioritisation of requirements:

- lacktriangle Meeting safety requirement of 3 μ Sv/h contact dose externally this is a legal requirement
- Minimising waste and activation as per ALARA principle this is best practice
- Instrument backgrounds this is a low priority issue and will be mitigated in the caves¹

¹The viability of this mitigation strategy is not part of the project scope

Transforming Neutronics Requirements into Methodology

In order of priority:

- Meeting safety requirement of 3 μ Sv/h contact dose externally this is a legal requirement
 - Adjust shielding thickness appropriately until requirement is met.
- Minimising waste and activation as per ALARA principle this is best practice
 - No heavy concrete
 - Boron-rich inner layers, and steel inner layers
 - CaCO concrete aggregates
- Instrument backgrounds this is a low priority issue and will be mitigated in the caves²
 - Collimator blocks and expansion zones (empty chopper pits) these also reduce cost downstream! (more on that soon)
 - Chopper pits designed as expansion zones (reduce cost downstream)
 - Boron-rich inner layer to reduce albedo back-shine

Problem Breakdown

What does the shielding look like in the following scenarios:

- Out of line of sight of the source
- Around a chopper out of line of sight of the source
- ullet Within line of sight of the source, with fast neutron wall loading $\propto 1/{\it R}^3$
- Around a chopper within line of sight of the source

Line of Sight Variable

Line of Sight

- Losing line of sight if possible saves cost
- Certainly helps with background
- Diminishing returns after 2× LOS
- Twice line of sight is recommended strategy for cost and background
- Instrument project should look at at least one option

V. Santoro et al

Line of Sight

Pre-2019 assumption, until more evidence exists:

- Within line of sight heavy shielding is needed (e.g. bunker)
- Heavy shielding is instrument-specific
 - Depends on beam dimensions
 - Depends on beam geometry, collimation etc
- Out of line of sight requirements are comparable to ILL

Assumptions Were Correct

- ESS-0511506 shows that this assumption is valid
- Fig. Right: shows horizontal slice through BIFROST, bunker wall on left
- Out of line of sight, the dominant source of radiation is prompt gamma from the neutron guides

R. Kolevatov, ESS-0511506

30th January, 2019

Out of Line of Sight: Prompt Gamma

Prompt Gamma Emission Probability vs m

- ESS-0511500 has a brilliant analysis from Rodion
- Fig. Right: shows Ni and Ti probability of neutron capture for various m
- Using MCSTAS models from the instruments, he was able to estimate the minimum shielding specifications for several instruments just for the prompt gamma
- Neutron doses are negligible in these areas, assuming other contributions are meeting the requirements.
- Lets look at the specifications for each instrument

R. Kolevatov, ESS-05115

9/38

Prompt Gamma Shielding: Beer

R. Kolevatov, ESS-0511500

Steel layer is always cheaper

Prompt Gamma Shielding: CSPEC

Dose beyond lateral shielding for CSPEC, 50 cm inner width

R. Kolevatov. ESS-0511500

Prompt Gamma Shielding: BIFROST

Dose beyond lateral shielding for BIFROST, 50 cm inner width

R. Kolevatov. ESS-0511500

Prompt Gamma Shielding: MAGIC

Dose beyond lateral shielding for MAGIC, 50 cm inner width, WORST-CASE scenario

R Kolevatov ESS-0511500

14 / 38

Prompt Gamma Shielding: TREX

R. Kolevatov. ESS-0511500

Prompt Gamma Shielding: DREAM

Dose beyond lateral shielding for DREAM, 50 cm inner width

R. Kolevatov, ESS-0511500

16 / 38

Prompt Gamma Shielding: ESTIA

Dose beyond lateral shielding for ESTIA, 50 cm inner width

R. Kolevatov, ESS-0511500

17 / 38

Within Line of Sight: Fast Neutrons - ODIN

Guide Geometry for ODIN

- ESS-0511504 contains F.
 Grünauer's thorough work on ODIN
- Fig. Right: shows geometry of chopper pit and guide

Fig. 233: Horizontal cut through the Monte Carlo model of the guide shielding F. Grünauer ESS-0511504

. <□ > <□ > < □ > < 글 > < 글

Guide Results for ODIN

Fig. 246: Vertical neutron dose rate distribution through the guide shielding perpendicular to the beam axis (40m from the focal point). The red line is the 1µSv/h border.

Top Down Results for ODIN

Fig. 240: Horizontal area through the Monte Carlo model of the ODIN instrument for which the radiation distribution is shown in the following image

Fig. 241: Total neutron dose rate distribution in the horizontal area. The red line is the 1 μ Sv/h border.

Side Results for ODIN

Fig. 243: Vertical area through the Monte Carlo model of the ODIN instrument for which the radiation distribution is shown in the following image

Fig. 244: Total neutron dose rate distribution in the vertical area. The red line is the $1\mu Sv/h$ border.

Within Line of Sight: Fast Neutrons - TREX

Chopper Pit and Guide Geometry

- ESS-0511498 shows a thorough analysis of TREX beamline
- Final geometry right: Top view, side view, front sec A, front sec B
- Collimator block (copper) reduces cost as well as background.

30th January, 2019

Chopper Pit Results

• Final geometry *right*: meets requirements

Tsito Randriamalala, ESS-0511508

30th January, 2019

Guide Results

• Final geometry right: meets requirements

30th January, 2019

Within Line of Sight: Fast Neutrons - HEIMDAL

Heimdal Results

- ESS-0511510 shows analysis of the HEIMDAL beamline
- The geometry is the same as the others with the boron-steel-concrete sandwich structure

Heimdal Results

- Graphs show overall dose rate and neutron contribution
- Photon contribution is negligible.

P. M. Bentley (ESS)

Within Line of Sight: Fast Neutrons - Magic

• Previous work from Uwe Filges (PSI) presented at IKON 2-3 years ago

Shielding around guide:

10 cm borated concrete 10 cm standard steel 50 cm standard concrete

Source - tally S: 13.8 Sv/h

@77m - tally A: 8.8 mSv/h fast neutron flux: 4.7E4 n/cm²/s

@30m – outside guide shielding tally B: 3.4 µSv/h

@50m ouside guide shielding tally C: 1.9 μSv/h

@77m ouside guide shielding tally D: 1.1 µSv/h

150m Guide Shielding

Shielding around guide behind 77m:

- 2m heavy concrete with vacuum tube belt
- 75m standard concrete (0.5 m thickness)

neutrons Source – tally S: 13.8 Sv/h

@80m ouside guide shielding tally E: $1.3 \mu Sv/h$

@150m inside guide shielding tally F: $0.2 \mu Sv/h$ $4.2 n/s/cm^2$

Summary of Thicknesses

36 / 38

Acknowledgements

- We gratefully include the work of:
 - Rodion Kolevatov IFE, Norway
 - Tsito Randriamalala FZJ, Germany
 - Florian Grünauer Physics Consulting, Germany
 - Uwe Filges PSI, Switzerland

- Also thanks for input from:
 - Valentina Santoro (ESS)
 - Nataliia Cherkashyna (ESS)
 - Doug DiJulio (ESS)
 - Emmanouela Rantsiou (PSI)
 - Erik Iverson (SNS, USA)
 - Stuart Ansell (MAX-IV)
 - Richard Hall-Wilton (ESS)
 - Kalliopi Kanaki (ESS)

37 / 38

Thank You

Thank you for your attention

