

1st Juli 2013

Simulators: Kim Lefmann (KU) Sonja Holm (KU) Mads Bertelsen (KU)

PSI: Jürg Schefer Nadir Aliouane

Mogens Christensen

Center for Materials Crystallography iNANO & Department of Chemistry Aarhus Universtet

Avoid over engineering

Combining too many tools makes too many compromises

Small angle scattering

Focus on selected tools and easy data access.

Science case

Composites, scaffolds or matrix embedded systems

Phase transition and nucleation.

Materials with magnetic properties.

SS - AA UN

Other hybrid instrument

The idea of combining **SANS** and **NPD** is not unique:

J-Parc has build three instruments:

Nova, I-Materia, HI-SANS

ILL have **D16** – not simultaneous coverage.

SNS planned **SANS** with diffraction detectors

ISIS have Nimrod.

ISIS are building an Instrument for

NI and NPD at TS-2: IMAT

NOVA (J-Parc)

iMateria (J-Parc)

Instruments at ESS

Thermal powder diffractometer

Bispectral powder diffractometer

Pulsed monochromatic powder diffractometer

Materials science & engineering diffractometer

HEIMDAL disappeared from the TDR...

Instrument concept

Cover multiple length scales:

Technique	Diffraction	Small angle scattering	Imaging
Length scale (approximate)	0.01-5 nm	1-200 nm	0.05-50 mm

Requires large coverage in reciprocal space:

Technique	Diffraction	Small angle scattering	Imaging
Reciprocal space (q)	0.5-20 Å ⁻¹	0.001-0.2 Å ⁻¹	NA
Wavelength band (Δλ)	0.6-4 Å	4-12 Å	NA
Resolution $(\Delta \lambda/\lambda)$	<0.5%	<10%	NA

Powder diffraction favors:

Short wavelength = high q Long instrument = resolution Divergent beam = high flux Can live with a narrow band

Small angle scattering favors:

Long wavelength = low q
Short instrument = broad band
Collimated beam = low q
Can live with low resolution

Different Guide Concepts

Instrument designers and potential users were invited for 2½ day workshop

Two guides from a single beamport

Moderator design

Beam extraction

Single beamport setup

Relative large curvature (R = 660 m) on cold guide

The beams meet at an angle of 5°

Thermal beam:

Pulse shaping chopper Pulse selection chopper Frame overlap chopper

Neutron pulse duration: 384 µs

Cold beam:

Band definition chopper Frame overlap chopper #1 Frame overlap chopper #2

Guides can be optimized individually

Thermal chopper system

Pulse shaping chopper:

- Counter rotating double chopper
- Position: 6.5 from thermal moderator
- •Frequency 280 Hz
- dt_{min} = 120 µs (4%), dt_{max} = 724 µs (25%)

The long pulse allow trading flux for resolution

$$\Delta d/d = \tau (\alpha L \lambda)^{-1}$$

pulse length

Instrument length

Instrument design – Who is HEIMDAL?

Instrument design

Ove Rasmussen, DTU-Risø

Sample environment

Sample access:

From top and bottom + side

Sample positioning:

Χ, Υ, Ζ, ω

=> collect PND/SANS at different positions

=> tomography of object

Sample environment test:

The setup can be build and tested before inserted into instrument.

Integrated optical components:

Radial collimation – different collimation

Easy insertion/removal

Focusing optics

Detectors

Powder diffraction:

Scintillation detectors with avalanche-photo-diodes

Efficiency – roughly 75% of ³He detector

Pixel size: 3x10 mm² Area ~4 m²

SANS:

Flat panel detector – based on ESS ¹⁰B development

Efficiency – remains to be clarified

Pixel size: 5x5 mm² Area ~2.5 m²

NI:

Medipix – time resolved imaging detector:

Area: $28x28 \text{ mm}^2$, pixel $50 \times 50 \text{ } \mu\text{m}^2$

Scintillation plate, optical mirror and CCD:

Area: Variable

Investment	Day 1	Upgrade 1	Upgrade 2
Guides (thermal and cold)	3		
Shielding HEIMDAL (instrument only)	1.8	0.5	0.5
Detectors including support/vacuum	5.3	2.5	2.5
chambers			
Electronics	0.5	0.2	
Sample Area, Instrument Mechanics	0.6		
Choppers	0.5		
Total HEIMDAL	11.7	3.2	2.7
Shielding primary 5° sector	1.5		
Total HEIMDAL Sector	13.2	3.2	2.7
Personnel			
Manpower	1.5	0.2	0.2

SANS related costs: 3.5 M€

Running the instrument

The powder detectors could be used for SANS measurements (4-5.7 Å)

Only single pulse suppression is necessary.

Diffraction setup

SANS detector setup

Diameter 3 cm 20 cm from detector

Good Q-range coverage even with single narrow wavelength band:

$$\Delta \lambda = 10-11.7 \text{ Å}$$

Should HEIMDAL be a day 1 instrument?

Day 1 instrument? ... Yes

Science case in TDR v3

Structure & in-situ processing Catalytically-active materials **Novel** materials Health & pharmaceuticals Fuel cells **Battery** materials Gas storage materials Solar cells & photovoltaics Engineering & geosciences Archeology & heritage conservation

Thermal powder diffractometer

TDR v3

Structure & in-situ processing

Catalytically-active materials

Fuel cells

Battery materials

Solar cells & photovoltaics

Novel states of matter

Engineering & geosciences

Archeology & heritage conservation

Earth & environmental sciences

Bispectral powder diffractometer

Structure & in-situ processing

Fuel cells

Battery materials

Gas storage materials

Solar cells & photovoltaics

Catalytically-active materials

Novel materials

Health & pharmaceuticals

Novel states of matter

Engineering & geosciences

Paleoclimatology & climate change

Earth & environmental sciences

Day-1 powder diffraction instrument

HEIMDAL can cover the same science cases

Plus broader length scales!

A day-1 instrument typically has 1 side covered by detectors WISH, POWGEN Structure & in-situ processing

Catalytically-active materials

Novel materials

Health & pharmaceuticals

Fuel cells

Battery materials

Gas storage materials

Solar cells & photovoltaics

Engineering & geosciences

Archeology & heritage conservation

The **pure powder part** of HEIMDAL is identical to the thermal powder diffractometer.

HEIMDAL as day-1 powder diffraction instrument JANO

HEIMDAL is a novel concept:

Allows completly new science **Performance similarly to Thermal Powder Diffractometer** Has the potential to attract new users

How can AU participate in the in-kind process?

