Compact SANS optimized for high flux and small sample volumes

Swiss-Danish SANS WP

Kaspar Klenø, U Cph Søren Kynde, U Cph Gergely Nagy, PSI Nicholas Skar-Gislinge, U Cph Kim Lefmann, U Cph Kell Mortensen, U Cph Joachim Kohlbrecher, PSI Lise Arleth, U Cph

Compact SANS optimized for high flux and small sample volumes

12m bend guide ($2 \times 2 \text{ cm}^2$, sample is twice out of line of sight)

Insert device:

Chopper system to improve resolution on demand

Swiss-Danish SANS WP

Kaspar Klenø, U Cph Søren Kynde, U Cph Gergely Nagy, PSI Nicholas Skar-Gislinge, U Cph Kim Lefmann, U Cph Kell Mortensen, U Cph Joachim Kohlbrecher, PSI Lise Arleth, U Cph

The proposed instrument

19

18

17

16

15

13

12

8

3

0

- 12 m curved guide to block line of sight twice
 ~95% of the neutron flux is transferred through the guide
- Up to 4 m Collimation
- Up to 4 m Sample-detector distance
- Frame overlap choppers and resolution improving choppers placed inside the shielding bunker.
- Sample environment placed right outside the shielding bunker at 16 m from the source.
- Detector is a 1x2 m² detector. (5mm pixels. Preferably 2 mm pixels near center)
- Resolution improving choppers allow for trading flux for wavelength resolution on demand

Compact SANS

A. J. Jackson and K. Kanaki

Compact SANS

Instrument length:	q_{min}	$q_{\text{max}} (\mathring{\mathbf{A}}^{-1})$	Flux on	Neutrons on
$L = A + L_1 + L_2$	(\mathring{A}^{-1})		sample	50.3mm^2
			$(\rm n/s/cm^2)$	sample (n/s)
17=15+1+1	0.0080	1.27(2.02)	12×10^{8}	5.9×10^{8}
18 = 14 + 2 + 2	0.0042	0.71(1.38)	3.3×10^{8}	1.7×10^{8}
20=12+4+4	0.0023	0.37(0.78)	0.88×10^{8}	0.44×10^{8}
ILL D22 A+2+2	0.0168	0.47	0.28×10^{8}	0.11×10^8

Table 2: Instrument performance with the Large Sample configuration: $s_1=8$ mm, $s_2=4$ nm and 1×1 m² detector. Numbers in parenthesis correspond to the 2×1 m² detector

A. J. Jackson and K. Kanaki

00001

Compact SANS

Flux

 $1.55 \times 10^7 \leftrightarrow 3.3 \times 10^8 / 4$

1 ↔ 5.3

Ap1 Diam (mm)	Ap2 Diam (mm)	L1 (m)	L2 (m)	Beam Size (mm)	Min Q (Å ⁻¹)	Flux (n/cm2/s)
20	10	2	5	85	7.28E-03	3.87E+08
10	5	2	5	43	3.64E-03	9.67E+07
4	2	2	5	17	1.45E-03	1.55E+07
20	10	5	5	40	3.43E-03	6.19E+07
10	5	5	5	20	1.71E-03	1.55E+07
4	2	5	5	8	6.85E-04	2.48E+06
20	10	10	10	40	2.09E-03	1.55E+07
10	5	10	10	20	1.05E-03	3.87E+06
4	2	10	10	8	4.19E-04	6.19E+05

Instrument length:	$q_{ m min}$	$q_{\text{max}} (\mathring{\mathbf{A}}^{-1})$	Flux on	Neutrons on
$L = A + L_1 + L_2$	(\mathring{A}^{-1})		sample	50.3mm^2
			$(\rm n/s/cm^2)$	sample (n/s)
17=15+1+1	0.0080	1.27 (2.02)	12×10^{8}	5.9×10^{8}
18 = 14 + 2 + 2	0.0042	0.71(1.38)	3.3×10^{8}	1.7×10^{8}
20=12+4+4	0.0023	0.37(0.78)	0.88×10^{8}	0.44×10^{8}
ILL D22 A+2+2	0.0168	0.47	0.28×10^8	0.11×10^8

Table 2: Instrument performance with the Large Sample configuration: $s_1=8$ mm, $s_2=4$ nm and 1×1 m² detector. Numbers in parenthesis correspond to the 2×1 m² detector

A. J. Jackson and K. Kanaki

Compact SANS

Flux

 $1.55 \times 10^7 \leftrightarrow 3.3 \times 10^8 / 4$

1 ↔ 5.3

Ap1 Diam (mm)	Ap2 Diam (mm)	L1 (m)	L2 (m)	Beam Size (mm)	Min Q (Å ⁻¹)	Flux (n/cm2/s)
20	10	2	5	85	7.28E-03	3.87E+08
10	5	2	5	43	3.64E-03	9.67E+07
4	2	2	5	17	1.45E-03	1.55E+07
20	10	5	5	40	3.43E-03	6.19E+07
10	5	5	5	20	1.71E-03	1.55E+07
4	2	5	5	8	6.85E-04	2.48E+06
20	10	10	10	40	2.09E-03	1.55E+07
10	5	10	10	20	1.05E-03	3.87E+06
4	2	10	10	8	4.19E-04	6.19E+05

Instrument length:	q_{\min}	$q_{\text{max}} (\mathring{\mathbf{A}}^{-1})$	Flux on	Neutrons on
$L = A + L_1 + L_2$	(\mathring{A}^{-1})		sample	50.3mm^2
			$(\rm n/s/cm^2)$	sample (n/s)
17 = 15 + 1 + 1	0.0080	1.27(2.02)	12×10^{8}	5.9×10^{8}
18 = 14 + 2 + 2	0.0042	0.71(1.38)	3.3×10^{8}	1.7×10^{8}
20 = 12 + 4 + 4	0.0023	0.37(0.78)	0.88×10^{8}	0.44×10^{8}
ILL D22 A+2+2	0.0168	0.47	0.28×10^{8}	0.11×10^8

Table 2: Instrument performance with the Large Sample configuration: $s_1=8$ mm, $s_2=4$ nm and 1×1 m² detector. Numbers in parenthesis correspond to the 2×1 m² detector

A. J. Jackson and K. Kanaki

Flux

 $1.55 \times 10^7 \longleftrightarrow 3.3 \times 10^8 /4$

1 ↔ 5.3

Ap1 Diam (mm)	Ap2 Diam (mm)	L1 (m)	L2 (m)	Beam Size (mm)	Min Q (Å ⁻¹)	Flux (n/cm2/s)
20	10	2	5	85	7.28E-03	3.87E+08
10	5	2	5	43	3.64E-03	9.67E+07
4	2	2	5	17	1.45E-03	1.55E+07
20	10	5	5	40	3.43E-03	6.19E+07
10	5	5	5	20	1.71E-03	1.55E+07
4	2	5	5	8	6.85E-04	2.48E+06
20	10	10	10	40	2.09E-03	1.55E+07
10	5	10	10	20	1.05E-03	3.87E+06
4	2	10	10	8	4.19E-04	6.19E+05

Instrument length:	q_{\min}	$q_{\text{max}} (\mathring{\mathbf{A}}^{-1})$		Neutrons on
$L = A + L_1 + L_2$	(\mathring{A}^{-1})		sample	50.3mm^2
			$(n/s/cm^2)$	sample (n/s)
17 = 15 + 1 + 1	0.0080	1.27(2.02)	12×10^8	5.9×10^{8}
18 = 14 + 2 + 2	0.0042	0.71(1.38)	3.3×10^{8}	1.7×10^{8}
20 = 12 + 4 + 4	0.0023	0.37(0.78)	0.88×10^{8}	0.44×10^{8}
ILL D22 A+2+2	0.0168	0.47	0.28×10^{8}	0.11×10^8

Compact SANS

Table 2: Instrument performance with the Large Sample configuration: $s_1=8$ mm, $s_2=4$ nm and 1×1 m² detector. Numbers in parenthesis correspond to the 2×1 m² detector

 $1.55 \times 10^7 \longleftrightarrow 1.3 \times 10^8 /4$

1 ↔ 2.1

Example for the type of samples the instrument is optimised for.

Instrument performance Benchmark against ILL D22:

With comparable beamsizes as D22 we cover a 1.4 times wider q-range 20 times faster. With small (D=2 mm²) beam we cover a 1.4 times wider q-range at the same time as at ILL

Chopper setup

Chopper setup

Main research focus:

- Bio, soft and colloidal samples in solution,
 i.e. primarily solution based samples that can be automatically handled with liquid-handling robots
- Fast time resolved experiments in a single setting broad *q*-range
- Scanning small angle neutron scattering:

NB: auxiliary deuteration and sample preparation facilities will be highly optimal.

- small sample volumes (aiming for ~10 μL at ~5 mg/ml) (2×2×2 mm³)
- low intensity signal and small structural features
 - ⇒ Maximize flux at the cost of wavelength resolution.
 - ⇒Aim for good high-q resolution.
 - ⇒Aim for covering a very broad q-range in a single setting

Main research focus:

Bio, soft and colloidal samples in solution,
 i.e. primarily solution based samples that can be automatically handled with liquid-handling robots

• Fast time resolved experiments in a single setting broad *q*-range

• Scanning small angle neutron scattering:

NB: auxiliary deuteration and sample preparation facilities will be highly optimal.

- small sample volumes (aiming for ~10 μL at ~5 mg/ml) (2×2×2 mm³)
- low intensity signal and small structural features
 - ⇒ Maximize flux at the cost of wavelength resolution.
 - ⇒Aim for good high-q resolution.
 - ⇒Aim for covering a very broad q-range in a single setting

Main research focus:

Bio, soft and colloidal samples in solution,
 i.e. primarily solution based samples that can be automatically handled with liquid-handling robots

• Fast time resolved experiments in a single setting broad *q*-range

• Scanning small angle neutron scattering:

Jiang et al. *Macromolecules*, 2013, 46 (17), pp 6981–6990

NB: auxiliary deuteration and sample preparation facilities will be highly optimal.

- small sample volumes (aiming for ~10 μL at ~5 mg/ml) (2×2×2 mm³)
- low intensity signal and small structural features
 - ⇒ Maximize flux at the cost of wavelength resolution.
 - ⇒Aim for good high-q resolution.
 - ⇒Aim for covering a very broad q-range in a single setting

Main research focus:

- Bio, soft and colloidal samples in solution,
 i.e. primarily solution based samples that can be automatically handled with liquid-handling robots
- Fast time resolved experiments in a single setting broad *q*-range

Scanning small angle neutron scattering:

NB: auxiliary deuteration and sample preparation facilities will be highly optimal.

- small sample volumes (aiming for ~10 μL at ~5 mg/ml) (2×2×2 mm³)
- low intensity signal and small structural features
 - ⇒ Maximize flux at the cost of wavelength resolution.
 - ⇒Aim for good high-q resolution.
 - ⇒Aim for covering a very broad q-range in a single setting

Sample Environment

Distance from guard slit to sample kept minimal (20 cm) to allow for small beams at sample position

Sample environments that can be custom fitted into the sample space:

- Flow cell (in unbroken vacuum to minimize background)
- quartz cuvettes
- standard rheometer
- pressure cell
- 1.1 Tesla Halbach permanent magnet, 0.7 Tesla E-magnet
- cold finger cryostat

Sample Environment

for bulky sample environments the detector vessel needs to be mounted on a rail system to increase the sample area.

Risk Analysis:

No severe technical risks are identified – But we still rely on development within Detectors, Shielding, Choppers and sample environment

Central risks:

A: That the biological user community will not become sufficiently large to use the capacity of the instrument

Mitigation:

A: Adapt the instrument for the existing soft matter community where there are heavy overload factors and where a high-flux, small sample volume instrument that covers a broad q-range in a single setting would be highly desirable and also cover new scientific territory due to improved possibilities for fast time resolved measurements and scanning SANS.

Risk of *not* dedicating a SANS instrument for the Life Sciences community: The number of SANS users from the Life Sciences community will stay at about 6% and ESS will not serve to further develop this community.

Thank You!

Swiss-Danish SANS WP

Kaspar Klenø, U Cph Søren Kynde, U Cph Gergely Nagy, PSI Nicholas Skar-Gislinge, U Cph Kim Lefmann, U Cph Kell Mortensen, U Cph Joachim Kohlbrecher, PSI Lise Arleth, U Cph

