

Time-of-flight

Reciprocal space

EXplorer

A bispectral chopper spectrometer for magnetism and material science

Jörg Voigt Lund, 26.9.2013

WP I1: Chopper spectrometers

COLD HR spectrometer for soft matter:

125m, 2.26Å band

BISPECTRAL spectrometer for magnetism and material science:

- 79.3m 3.56Å band
- 154.3m 1.83Å band

Proposal submission

Users and experts interaction

Workshops

Berlin, 12.7.2011

Berlin, 28.11.2011

Bernried, 17.-19.6.2013

People

Arbe, Arantxa; **Bech Christensen**, Niels; **Bendix**, Jesper; Boothroyd, Andrew T.; Braden, Markus; Fennel, Tom; Fernandez-Alonso, Felix; Hayden, Stephen; Inosov, Dmytro; Juranyi, Fanni; Keimer, Bernhard; Perring, Toby; Petit, Sylvain; Ronnow, Henrik; Santini, Paolo; Schober, Helmut; Stockert, Oliver; Wildes, Andrew; Deen, Pascale; Freeman, Paul; Comez, Lucia; Ollivier, Jacques; Parker, Stewart; Rotter, Martin; Russina, Margarita; Saboungi, Marie-Louise; Sacchetti, Francesco: Paciaroni, Alessandro: Steen Pedersen, Kasper: Su, Yixi; Hermann, Raphael; Krutyeva, Margarita; Balakrishnan, Geetha; Ballou, Rafik; Bator, Grazyna; **Bennington**, Stephen; **Busch**, Sebastian; **Desmedt**, Aranud; **Dreiser**, Jan; **Ewings**, Russell; **Fak**, Bjoern; **Frick**, Bernhard; Güdel, Hans Ulrich; Guidi, Tatiana; Halle, Bertil; Horsewill, A. J. : Jobic, Herve: Kimber, Simon: Lake, Bella: Leclercq. Francoise; **Lefmann**, Kim; **Meyer**, A.; **Mulder**, Fokko M.; Ondrejkovic, P.; Oppeneer, Peter; Pajzderska, A.; Pappas, Catia; Paul, Don McK.; Paul-Bouncor, Valerie; Remhof, Arndt; Roth, Georg; Rovira-Esteva, Muriel; Smith, Jeremy C.; Suellow, Stephan; van Eijck, Lambert; Vogel, Michael; Waldmann, Oliver; Winpenny, Richard; Zielinski, Piotr

Science Case Survey 2011

	Soft matter	Material Science	Magnetism
Wavelength range	0.5-20 Å	0.5-20 Å	0.5-20 Å
Energy range	QEL,VDOS, -200 meV <e<200mev< td=""><td>QEL -200meV<e<30mev< td=""><td>-200meV<e<200mev< td=""></e<200mev<></td></e<30mev<></td></e<200mev<>	QEL -200meV <e<30mev< td=""><td>-200meV<e<200mev< td=""></e<200mev<></td></e<30mev<>	-200meV <e<200mev< td=""></e<200mev<>
resolution	2-10 µeV	0.4meV-1.3meV @2Å	30 μeV-2meV
Q- range	$< 0.1 \text{Å}^{-1} \rightarrow 2-4 \text{Å}^{-1}$	< 0.1Å ⁻¹ → 5-6Å ⁻¹	$< 0.1 \text{Å}^{-1} \rightarrow 2-4 \text{Å}^{-1}$
resolution	0.01 Å-1 (SAS)→ relaxed	0.01 Å-¹ (SAS)→ relaxed	0.01 Å-1 (SAS)→ relaxed Mapping
Sample: size	1x1, 10x10, 30x60mm ² Liquids, Solutions	1x1, 10x10, 30x60mm ² Powder, X-tals, melts	1x1, 10x10, 30x60mm ² Single X-tals
environment	high pressure, humidity cell, Laser irradiation T 100- 4·102 K	high pressure, in-situ reaction chamber, levitation T 10 ⁰ -10 ³ K	high pressure, high mag field, laser T 10 ⁻² -10 ³ K
Options	Polarization analysis	Polarization analysis	Polarization analysis

High T_c Superconductivity

- Gap, incommensurate satellites + resonance at once
- Smaller single X-tals
- More details, lineshapes

MAPS: La_{1.875}Ba_{0.125}CuO₄ J. M. Tranquada *et al.*, Nature **429**, 534 (2004)

Momentum, h (r.l.u.)

Benefits from many E_i's

Benefits from many E_i

$$L = 155 \text{m}, L_{\text{M}} = 150 \text{m}$$

$$\Delta \lambda = \frac{h}{m_n} (L \times 14 \text{Hz})^{-1} \approx 1.8 \text{Å}$$

Multiferroics

- Pixelized detector (3d)
- Very good energy resolution
- Divergence ± 1°
- Polarization

IN5: Ba₃NbFe₃Si₂O₁₄ Loire *et al.*, PRL **106**, 207201 (2011)

Polarisation and bandwidth

E. Babcock et al., Jour. Phys. Soc. Jap. S.E., proceedings of QENS/WINS 2012, Nikko Japan

Polarization and Analysis for TOPAS

On-beam polarizer

Analysis: magic PASTIS magnetic system

- ✓ SEOP for thermal neutrons
 - ✓ Continuously pumped
- ✓ SM Cavity for cold neutrons

- ✓ Homogeneous field configuration
- ✓ Offline gas polarization
- √ Variable pressure

Energy materials

- Diffusive motion, acoustic and optical branches at once
- Good energy resolution to resolve atomic hopping

IN6: Oxygen mobility in SOFC W. Paulus et al, JACS 130, (2008), 16080

Diffusive motion in soft matter

- Extreme energy resolution
- Large dynamic range : momentum transfer!!

TofTof: n-alkane (C₃₂H₆₆) chain T.Unruh et *al.*, J. Chem Phys. **129**, 121106 (2008)

Gaps

Chiral magnets

Frustration

Heavy fermions

Magnetic

Monopoles

Correlated electrons

Low dimensional magnetism

HTSC

Magnetic resonance

Magnetocaloric materials

Thermoelectric materials

Ion transport

Hydrogen storage/mobility

Batteries and fuel cells

Design parameters

Magnetism

Large dynamical range → bispectral extraction UJÜLICH

Berlin – Copenhagen simulations group

Geometry I:

moderator

14Hz 2.86 ms

$$\Delta \lambda = \frac{h}{m_n} (f_{\text{source}} L_{\text{total}})^{-1}$$

time of flight

Geometry I: $\frac{\Delta L_{SD}}{L_{SD}} \leq 0.5\%$

Energy resolution

$$\sigma_E^2 = \frac{(mv'^3)^2 (A^2 + B^2 + C^2)}{(L_{PM}L_{SD})^2}$$

$$A^{2} = \left[L_{MS} + L_{SD} \left(\frac{v}{v'} \right)^{3} \right]^{2} \tau_{P}^{2}$$

$$B^{2} = \left\{ \left[L_{MS} + L_{SD} \left(\frac{v}{v'} \right)^{3} \right]^{2} + L_{PM}^{2} \right\} \tau_{M}^{2}$$

$$C^{2} = \left(\frac{L_{PM}}{v} \right)^{2} \sigma_{L_{MS}}^{2}$$

Important: L_{PM}>20m to match HR!!

Define the time origin

Geometry III

Chopper layout

Time frames issues

$$T_{\text{frame}} = \frac{m_n}{h} L_{\text{SD}} \lambda' = \frac{m_n}{h} L_{\text{SD}} \lambda \sqrt{\frac{1}{\frac{\hbar\omega}{E} + 1}}$$

- ! Block beam $2x(T_M \tau_M)$
- ! Fully opaque during τ_{M}

A Fan chopper with adjustable blades

JÜLICH FORSCHUNGSZENTRUM

- Mechanical parts manufactured
- ✓ Drives procured
- ✓ Control Hardware procured
- ✓ Assembly March '13

M. Russina, F. Mezei, J. Phys.: Conf. Ser. **251** (2010) 012079

A Fan chopper with adjustable blades

Dynamic range of a single target pulse

Pulse supression active

Band centered at 4.5 Å

Neutron guide layout

- Optimize the brilliance transfer
 1x3 cm beam spot
 ±1° divergence
- 2 ellipses
 - → small windows
 - → shorter burst times
 - → correct coma aberrations
- Homogeneous beam profile/sample dimensions
- Concentrator/Collimators
- Avoiding direct LoS
 - T0 chopper
 - Beam catcher at ellipse 1 and P chopper
 - Kinked ellipses

Beam profile and divergence on sample

$$\lambda = 1 \text{\AA}$$

λ=1.8Å

vert divergence (deg)

λ=3.6Å

hor divergence (deg)

λ=7.2Å

-0.5 0.5

hor position (cm)

Transport system performance

Figure of merit 1x3 cm² +/-0.5 °

4Å

	Short	Long
El.En.res. (µeV)	112	125
Flux (10 ⁵ n/s/cm ²)	7	5.4

Comparison with existing instruments

4Å

	Rep. rate (Hz)	El. En. Res (µeV)	Monochr. flux (n/s/cm ²)	Gain factor single pulse	Multiple pulses	Gain
T-REX	14	112 ± 2	7 10 ⁵ Average over 1x3cm ²	9	4-16	36-144
LET	10	102 ± 2	5.6 10 ⁴ Average over 4x4cm ²	1	4	4
IN5	70	105 ± 6	8.9 10 ⁴ Average over 2x5cm ²	0.09	70	1.6

Polarisation and bandwidth

$$\Delta \lambda < 2 \text{Å}$$

E. Babcock et al., Jour. Phys. Soc. Jap. S.E., proceedings of QENS/WINS 2012, Nikko Japan

Cost estimate today

Item	Cost [k€]
Shielding	3500
Neutron guide system	1030
Choppers	1250
Detector	10000
Detector tank	1110
Polarization	370
	18000

Specifications

- 180° horizontal
- ±30° vertical
- 50 m² area

Cost estimate today

Item	Cost [k€]
Shielding	3500
Neutron guide system	1030
Choppers	1250
Detector	10000
Detector tank	1110
Polarization	370
	18000

Options 1. ³He, 2. ¹⁰B solid state, 3. WSF

Acknowledgements

Thomas Brückel

Nicolo Violini

Andreas Wischnewski

Stefano Pasini

Sven Janaschke

Margarita Russina

Katharina Rolfs

Pascale P. Deen

Kim Lefmann

Wiebke Lohstroh

Luca Silvi

Giovanna Simeoni

Anette Vickery

Linda Udby

T-REX will be/have

- Multispectral spectrometer
 - ✓ From extreme energy resolution to very high flux
 - √ 4 decades in energy/time on one instrument
- Polarization
- Pixel power
 - Adaptive collimation
 - ✓ $\Delta Q \ge 0.01 \text{ Å}^{-1}$ for small angle region
 - \checkmark Q ≤ 12 Å⁻¹
 - Mapping of coherent excitations

Looking forward meeting you there

Thank you for the attention

Versatile chopper configuration

Short layout 79.3 length

Band centered around 3 meV - 5Å

1.3 higher rep. rate1.3 higher flux

higher acquisition rate

better resolution

Application of Matrix calculation to ToF spectrometers

$$Q = \frac{m}{\hbar} \left(v^2 + v'^2 - 2vv' \cos \theta \right)^{1/2}$$
$$E = \frac{m}{2} \left(v^2 - v'^2 \right)$$

$$\delta Q = Q - Q_0 = \sum_{i=1}^{N} \frac{\partial Q}{\partial x_i} \Big|_{\substack{x_i = \hat{x}_i \\ x_i = \hat{x}_i}} \delta x_i$$
$$\delta E = E - E_0 = \sum_{i=1}^{N} \frac{\partial E}{\partial x_i} \Big|_{\substack{x_i = \hat{x}_i \\ x_i = \hat{x}_i}} \delta x_i$$

$$Cov(Y) = Cov(JX) = JCov(X)J^T$$

 x_i

 L_{PM} L_{MS} L_{SD} τ_P τ_{M} au_D ω_M σ_{θ_i}

 σ_{θ}

MAGIC PASTIS LAYOUT

Z direction compensated Helmholtz pair

Large solid angle coverage 90° (H) x 40° (V) OFFLINE polarization

Energy resolution

$$\sigma_E^2 = \frac{(mv'^3)^2 (A^2 + B^2 + C^2)}{(L_{PM}L_{SD})^2}$$

$$A^{2} = \left[L_{MS} + L_{SD} \left(\frac{v}{v'}\right)^{3}\right]^{2} \tau_{P}^{2}$$

$$B^{2} = \left\{\left[L_{MS} + L_{SD} \left(\frac{v}{v'}\right)^{3}\right]^{2} + L_{PM}^{2}\right\} \left(\tau_{M}^{2} + \frac{\sigma_{\theta_{i}}^{2}}{\omega_{M}^{2}}\right)$$

$$C^{2} = \left(\frac{L_{PM}}{v}\right)^{2} \sigma_{L_{MS}}^{2}$$

Energy resolution

JÜLICH FORSCHUNGSZENTRUM

control

$$\sigma_E^2 = \frac{(mv'^3)^2 \left(a^2 (\tau_P^2) + b^2 \left(\tau_M^2 + \frac{\sigma_{\theta_i}^2}{\omega_M^2}\right) + c^2 \sigma_{L_{MS}}^2\right)}{\left(L_{PM} L_{SD}\right)^2} \mathbf{x2}$$

Energy resolution (meV)

$$F \propto rac{ au_{
m P} au_{
m M}}{L_{
m PM}L_{
m SD}}$$
 x4

Balanced condition

$$\tau_{\rm P} = \tau_{\rm M} \left(\frac{L_{\rm PM}}{L_{\rm MS} + (\lambda/\lambda')^3 L_{\rm SD}} + 1 \right)$$

< 2ms

Vitess 2.11 simulations of the bispectral 79.3m instrument

R. E. Lechner, Proceedings of the ICANS-XV Meeting (2000) Tsukuba, Japan, JAERI-Conf 2001-002, pp. 357 – 376

Q resolution knowledge

$$\sigma_Q^2 = \left(\frac{m}{\hbar}\right)^4 \frac{1}{Q^2} \left(A_Q^2 + B_Q^2 (\cos \theta - 1)^2 + C_Q^2 \sin^2 \theta\right)$$

$$A_{Q} = \frac{v^{3}}{L_{PM}} \left(\frac{L_{MS}}{L_{SD}} - 1 \right) \left(\tau_{P}^{2} + \tau_{M}^{2} + \frac{\sigma_{\theta_{i}}^{2}}{\omega_{M}^{2}} \right)^{1/2}$$

$$B_Q = \frac{v^2}{L_{SD}} \left[v^2 \left(\tau_M^2 + \frac{\sigma_{\theta_i}^2}{\omega_M^2} + \tau_D^2 \right) + \sigma_{L_{MS}}^2 \right]^{1/2}$$

$$C_Q = v^2 \sigma_{\theta}$$

Q,E correlation knowledge

Following a phonon dispersion along selected directions

Quasi-Elastic investigations

McStas simulations vs Analytical calculations

wavelength (Å) T0 choppers operation 0.29 3 3.47 $L_{ST} \geq \frac{\tau_S - \tau_R + \frac{\Delta \theta}{2\pi f}}{\alpha \lambda_{MIN}} \quad \text{To allow $\lambda_{\rm MIN}$ pass through the chopper}$ 79.3 76.3 $L_{ST} \leq \frac{\frac{1}{f} - t_{fc} - 2 au_0}{\frac{1}{f_-}} L$ To fill the frame at detector position 50 HS distance (m) T_0 Rev. Sci. Instrum. 83 56 Hz $T_0 + T_c$ L_{ST_0} 6 2.86 time (ms) 1/56 1/28 1/14 0 NIMA 661,1 (2012) time of flight (s)

Wavelength selection

$$\Delta \lambda = \frac{h}{m_n} (f_{\text{source}} L_{\text{Det}})^{-1}$$

Issue: repetition after 16Å Solved by L_{P1-P2}>5cm

Flexible band-width
2 14Hz disks
0.7m radius
180° windows

Transport system

Transport system optimization

λ(Å)

λ(Å)

Transport system performance

Transport system performance

Transport system performance

Transport system + choppers running

Transport system + choppers running

Schematic layout

Outline

Technical description of spectrometer layout
 Analytical investigation of Q,E resolution of a generic layout
 Characteristics of the present instrument
 Choice of instrumental parameters
 Technical realization of specific components
 polarization and p. analysis
 Implementation of poly-chromatic operation
 T0 choppers
 Fan choppers

- Instrument performance
- Scientific impact
- Costing

Comparison to existing instruments

per pulse

Tunable en resolution and Q range

Vertical

Tunable en resolution and Q range

High Flux

wertical convergence 5.892/1000, total length 5095mm vertical convergence 12.57/1000, total length 8000mm QEL solids, liquids, conting M=2, surface 0.132 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocording M=3, surface 0.015 say m Vertical convergence 16.57/1000, total length 1200mm ocordi

horizontal convergence 2.04/1000, total length 7850mm

harizontal convergence zero, total length 5245mm

INS $0.1 \text{meV} < \hbar \omega < 250 \text{meV}$

Appl. Phys. A 74 [Suppl.], S305–S307 (2002)

5Å	Measured	Vitess Sim	Analytical
El. En. Res (µeV)	103	110	102
Flux (10 ⁵ n/s/cm ²)	6.83	8.97	/

LET @ISIS TS2

0.5meV < E < 80meV

Polychromatic experiments

QEL in high resolution configuration

 $\begin{array}{c} \text{INS} \\ \text{0.08meV} < \hbar \omega < \text{80meV} \\ \text{Magnetic excitations} \end{array}$

4Å	Measured	Vitess Sim	Analytical
El. En. Res (µeV)	100	100	102
Flux (10 ⁴ n/s/ cm ²)	5.6	7.7	/

Q performance 1° collimation

Scientific impact

	Flux	Collimation	Multi-chromatic investigations	Max Gain	Gain Range
Present Instrument	5	7	12	420	5-420
IN4-C	1	1	1	1	1

	Flux	Collimation	Multi-chromatic investigations	Max Gain	Gain Range
Present Instrument	2	10	7	240	2-240
IN6	1	1	1	1	1

Versatile choppers configurations

	x14	(Hz)			
f _{P1}	f_{P2}	f _{M1}	f _{M2}	pulses	Δλ (x 0.157Å)
9	9	12	12	12	2
			11	4	6
12	12	16	16	16	1.5
			15	4	6
			14	8	3
15	15	20	20	20	1.2
			19	4	6
18	18	24	24	24	1
			21	12	2
			20	8	3

constant flux constant resolution per monochromatic sub-pulse

Costing Estimation at present days

Item	Subitem	Cost [k€]	Remarks
Shielding		3500 (?)	MCNPX calculations required
Neutron guide system			
	Neutron guide	800	
	Vacuum housing	80	
	Vacuum system	30	
	Bi spectral extraction	100	
Choppers			
	Band Width pair	200	
	Pulse chopper pair	400	
	M chopper pair	400	
	Pulse suppression chopper	50	Estimated from Prototype
	T0 chopper	200	

Costing Estimation at present days

Item	Subitem	Cost [k€]	Remarks
Additional beam optics			
	Slit system	30	
	Adaptive optics		
Detector		10000	(?) (?) (?)
Detector tank			
	Vessel	800	
	Vacuum system	200	
	Sample goniometer	50	
	Shielding	60	
Monitors			
	Incoming beam	10	
	Beam diagonistic	40	2d Monitor to analyze the beam and to position the sample in the beam.

Costing Estimation at present days

••
JULICH
EORSCHIINGSZENTRIIM

		FORSCHUNGSZENTRUM
Subitem	Cost [k€]	Remarks
SEOP polarizer	50	Based on TOPAS experience
Magic Pastis	80	Based on TOPAS experience
Guide changer	50	Based on TOPAS experience
³ He	150	3He price 3 k€/bar l
³ He Recovery	40	For the wide angle PA a separate recovery would be used as the analysis volume is large
	17320	
	DY	
	SEOP polarizer Magic Pastis Guide changer ³ He	SEOP polarizer 50 Magic Pastis 80 Guide changer 50 ³ He 150 ³ He Recovery 40

Human resources		PY	
	Scientists	12	
	Engineers	12	
	Technicians	15	

Wavelength selection

$$\delta \lambda = \frac{h}{m_n} (f_{\rm M} L_{\rm M})^{-1}$$

$$f_{\mathrm{P}} = \underbrace{\frac{L_{\mathrm{M}}}{L_{\mathrm{P}}}} f_{\mathrm{M}}$$

Ratio 1.5

delivers a
clean spectrum —

Requirements for choppers

Multi-chromatic operation Useful incoming neutron wavelength band for experiments FO Adjustable elastic energy resolution/interaction time Flexible trading resolution for flux P_1P_2 Keep back-ground low Adapt variable time frames due to multi-chromatic operation To BC

moderator

14Hz 2.86 ms

time of flight

Requirements for choppers

Time-line

scientific impact

concept

Instrument proposal

ment science case

engineering design costing

TOF technique adaptation

Currently nearly 20 TOF spectrometers operating in existing facilities

Outline

- Description of the spectrometer layout
- Instrument performance
- Scientific impact
- Costing

Design parameters

Secondary spectrometer wide detectors ³He replacement polarization analysis add-ons

Primary spectrometer moderator bi-spectral extraction chopper system neutron guide polarization

Q resolution (req. 0.01Å⁻¹ → relaxed)

$$\sigma_Q^2 = \left(\frac{m}{\hbar}\right)^4 \frac{1}{Q^2} \left(A_Q^2 + B_Q^2 (\cos \theta - 1)^2 + C_Q^2 \sin^2 \theta\right)$$

$$A_{Q} = \frac{v^{3}}{L_{PM}} \left(\frac{L_{MS}}{L_{SD}} - 1\right) \left(\tau_{P}^{2} + \tau_{M}^{2}\right)^{1/2}$$

$$B_{Q} = \frac{v^{2}}{L_{SD}} \left[v^{2} \left(\tau_{M}^{2} + \tau_{D}^{2}\right) + \sigma_{L_{MS}}^{2}\right]^{1/2}$$

$$C_{Q} = v^{2} \sigma_{\theta}$$

Q resolution (req. 0.01Å⁻¹ → relaxed)

$$\sigma_Q^2 = \left(\frac{m}{\hbar}\right)^4 \frac{1}{Q^2} \left(A_Q^2 + B_Q^2 (\cos \theta - 1)^2 + C_Q^2 \sin^2 \theta\right)$$

1.5° collimation

3.5° collimation

Open issues

Verify requirements on energy and wave-vector transfer as from science case survey 2011.

Length: Larger band / narrower band

L_{SD}: Higher acquisition rate / better resolution

Space for the sample environment

Avoiding LoS