Jonas Okkels Birk, Maron Marko, Paul Freeman, Mads Bertelsen, Jacob Larsen, A. Hansen, Fanni Juyrani, Christof Niedermayer, Kim Lefmann, Niels Bech Christensen, Henrik M. Ronnow

Continuous Angle Multiple Energy Analysis

Inverse time of flight

- **CAMEA**
- Vertically scattering analyzers.
- Multiple analyzers behind each other select several energies.
- E_f=2-32meV
- Energy resolution as cold TAS and medium cold TOF
- Can use full ESS long pulse shaping ⇒ better res
- Optimized for small sample size 1cm³ down to 1mm³
- High field (25T), high pressure (100kbar)
- Prototype tested at PSI-MARS

Multiple energies

Dimensions ✓

E _{Analyser} (meV) 2.5 2.8 3.1 3.5 4.0 4.5 5.0 5.5 6.5 8.0 D_{Sample-Analyser} (m) 1.00 1.06 1.13 1.20 1.28 1.37 1.46 1.56 1.67 1.79 D_{Analyser-Detector} (m) 0.90 1.00 1.05 1.10 1.15 1.25 1.30 1.35 1.45 0.80

Mosaicity: 60 minutes

Sample size: ½*½*½ cm³

Detector width: ½ inch

Pixel size: ½ cm

Guide ✓

Brilliance transfer of Guide very good above 2 Å even if mirrors degrade

Choppers ✓

2 Pulse shaping Choppers

2 Frame overlap Choppers

1 Tail removal Chopper

2 Order sorting Choppers

Selects:

- Bandwidth range of E_i
- Pulse-length resolution

E_i-band and resolution tuning ✓

Bandwith chopper

 $e.g. \Delta \lambda = 1.8 \text{ Å, and}$

 $E_i = 4.2 \text{meV} - 12 \text{meV}$

Only desired energy range hit sample

Pulse length chopper:

Full ESS long pulse

~4% resolution

Pulse length: /3.3 neutrons

~1.2 % resolution

Analysers: ~1.2% resolution

Total ~1.6% resolution

~30% better than focused TAS

Analyser energy resolution ✓

Simulated and calculated energy-resolutions of secondary spectrometer shows ~1.2%

Better E_f resolution at no flux cost!

- Distance collimation ⇒ better resolution than standard TAS
- Multiple energies for each analyser
- Adjacent detectors record different energies ⇒ 2.7x neutrons

Momentum coverage ✓

Ronnow - Lund 2013

Coverage at $\Delta E=0$

Each analyser covers a line in Q-plane (with small gaps)

Sample rotation covers reciprocal plane

Small gaps are covered by adjacent energies

For completely homogeneous coverage, analyser tank can be rotated

Example

- Single acquisition gives N Q-E manifolds
- Often sufficient to determine dispersion changes
- Fast parametric studies, or sufficient stats for very small samples

CAMEA: best possible "in-plane spectrometer"

- Direct TOF give 3D parabolic manifold of 4D S(q,w)
 - Must analyse off-symmetry data
 - Or perform full "Horace" scan
- CAMEA: focus on flat 2D Q-plane and energy
 - Allows measuring Q-planes in 3D systems
 - ⇒ larger fraction of measured neutrons analysed
 - Several complete Q-Energy manifolds in one acquisition

Analyzer Solid Angle

Instrument	Facility	Analyzer	Solid Angle	±1.4° Solid	±1.4° Gain per
			(steradians)	Angle	analyzer
				(steradians)	
CAMEA		PG (002) or (004)	0.13 x 10	0.13 x10	
OSIRIS	ISIS	PG (002) or (004)	1.09	0.12	1.08
Iris	ISIS	PG (002) or (004)	0.36	0.11	1.18
PRISMA	ISIS	PG (002)	0.021 @ 5 meV	0.0147	8.8
MACS	NIST	PG (002)	0.15	0.075	1.7
Flatcone	ILL	Si(111)	0.05	0.05	2.6

- Same coverage as other indirect time of flight.
- Higher coverage than multiplexing TAS
- Multiply these numbers by the 10 analyser energies

CAMEA ±1° vertical, ±0.75° horizontal,1.4 x 10⁹ ncm⁻¹ s⁻¹ centered on 3 Å

Instrument	Facility	Monochromator	Flux	CAMEA Gain	Energy Range
			N per cm ² per s		(meV)
IN14	ILL	PG(002)	1.6 x 10 ⁷	88	0.1-17
PANDA	FRM-II	PG(002)	1.9×10^7	74	0.1-20
MACS	NIST	PG(002)	5x10 ⁸	2.8	2.3-14*
THALES	ILL	PG(002)	3.5x10 ⁸	4	0.1-20
OSIRIS	ISIS	Time-of-Flight	3.24x10 ⁷ @ 180uA	43	-3 to 4
IRIS	ISIS	Time-of-Flight	1.2x10 ⁷ @180uA	117	-3.5 to 4
IN20 (polarized)	ILL	Heusler	1.05 x 10 ⁷	>30??	2-90

THERMAL Spectrometer

Wide divergence – Simulated Flux

Polarization analysis <

- Supermirror polarizers in a guide changer
- Option 1: PASTIS- wide angle He-3 spin cell
 - consistent with sample space of CAMEA
 - OK for pressure cells
 - Not OK for magnets
- Option 2: Supermirror array
 - Easier/cheaper than direct TOF because only +-2 degree vertically
 - D7 proven concept
 - Cost based on D7 quote 2M Euros

Experimental capabilities

- Planar Q-E maps by sample rotation
- Small samples 1mm³ to 1cm³
- Single acquisition scans ⇒ parametric studies
 - Magnetic field, Pressure, Temperature, etc.
- Extreme conditions
- In situ studies
- Time resolved studies: 20µs resolution

Ideal for extreme environments

- 16+2T exists today, 25 T split coil HTSC likely in 2020
 - Quantum Magnetism, Supercondictivity, Magnetoelectrics, Magnetocalorics
 - 18T is x2 over existing mapping instruments
- 100kbar, 0.3K-300K and 300-2000K possible
 - Quantum phase transitions, Planetary sciences

Planetary science: High pressure and High Temperature

- Study of the structure of planets
- Upper mantle studies 30 GPa
- High Temperatures and 30 GPa maximum 1-5 mm³
- QENS H-diffusion water dynamics, Sound velocities
- PE cells used for geo-science
- Sintered DAC for NS emerging

Pressure determination: 1%
 wavelength resolution mode and
 diffraction detector

Scientific case

Report On Instrument Concept and Scientific Case PG Freeman et al. 2013

Prototype at PSI

- Proving that CAMEA works
- Validation of calculations (McStas, analytical)
- Trying different geometries and solutions
- Getting experiences in building
- Checking background conditions, and searching for unknown effects

Resolution and energy multiplication works as calculated

E [meV]

Real experiments

- LiHoF₄ crystal field excitations
- Comparison with FOCUS direct TOF

- Prototype has better resolution
- Prototype has >100 times less graphite than CAMEA
- MARS has "slightly" less flux than optimized guide at ESS

Project plan and progress

- Concept and science case ✓
- Calculations and Simulations:
 - Kinetics and (q,ω) coverage ✓
 - Flux and resolution possibilities
 - Guide and chopper system ✓
 - background and spurious scattering next
 - Virtual experiments next
 - Geometry optimizations ongoing
- **Prototyping**
 - Demonstration on RITA II ✓
 - Prototype on MARS at PSI in ✓
 - Pilot-project on RITA-II at PSI in next
- Sample environment
 - Magnet, P-cell 18T,100kbar ✓; 2020 possibilities next

Thank y

Momentum coverage ✓

Graphite thoroughly characterized

Reflectivity and transmission

Inelastic contamination

Analysers
mounted on
pulse-tube cooled
base plate
in vacuum tank

Background

- Background suppression so far successful still being optimized
- Important: so far we understand all sources of bck.

