

MODI – a monochromatic powder diffractometer for ESS

P.F Henry¹, B. Hansen²

¹Instrument Scientist - Powder diffraction, ESS ²DTU Physics + ESS design update Programme, DK

Why TOF for PD?

Why Monochromatic for PD?

Science Drivers for a GPPD

A general purpose powder diffractometer (GPPD) MUST address a wide user community:

- Nuclear & magnetic structure (crystallography)
 - Small to medium unit cells (< 2000 ų)
 - Good Q-range coverage (Q_{max} at least 12.0 Å⁻¹, preferably 20 Å⁻¹)
 - Medium to high resolution ($\Delta d/d < 1\%$, preferably approaching 0.1%)
 - Flexible set-up
- In situ processing
 - High flux
 - Large detector coverage
 - Large, open sample space
 - Availability of wide range of sample environment
- Additional specialist capabilities?
 - Texture
 - Single crystal
 - Polarisation

GPPD using monochromators

- Nuclear & magnetic structure (crystallography)
 - Small to medium unit cells (< 2000 Å³)
 - Good Q-range coverage (Q_{max} at least 12.0 Å⁻¹, preferably 20 Å⁻¹)
 - Medium to high resolution (Δd/d <1% preferably approaching 0.1%)
 - Flexible set-up
- In situ processing
 - High flux
 - Large detector coverage
 - Large, open sample space
 - Availability of wide range of sample environment
- Additional specialist capabilities?
 - Texture
 - Single crystal
 - Polarised beam

/

✓ 12 Å⁻¹

- ✓ single side
- ✓ side access
- /
- 2D detector
- 2D detector
- /

Variable resolution NPDs

	WOMBAT-ANSTO	D20 - ILL	HRPT - SINQ
Area detector coverage / °	120	153.6	160
Number of detectors	960	1536	1600
Detector angular resolution / °	0.125	0.1	0.1
Sample – detector distance / cm	70	147	150
Detector solid angle / Sr	0.6	0.28	0.28
Flux for HOPG(002) at 42° takeoff / n cm ⁻² s ⁻¹	1.3×10^8 (est.)	4.2×10^7	-
Flux for Ge(115) at 120° takeoff / n cm ⁻² s ⁻¹	-	8.0×10^{6}	2.4×10^{5}

Initial model

- D20 on the ESS source cf. verified ILL model (based on flux measurements in H11, at sample position and real data)
- D20 uses only 1/3 of beam from H11
- Single λ performance as expected
- Non-optimised model
- Lower backgrounds
- No extra use of TOF capability of the detector

How can we modify the instrument to take advantage of a long pulse source time structure?

Multi-wavelength diffraction data?

Yes! – separate using TOF channel

- Gain in count rate and Q-range
- Resolution minimum for each λ at different Q
- Increase overall instrument length to increase TOF λ separation

Using TOF to separate λ at detector

For ≈22 m total flight path length (D20) using (h00), 118° takeoff angle:

(400) - 2.42 Å take 13.46 ms

(800) - 1.21 Å take 6.73 ms

(1200) - 0.805 Å take 4.477 ms

Wavelength difference required ≈ 0.9 Å

Maximum wavelength in 1st frame 11.5 Å

For 50 m total flight path length:

(400) - 2.42 Å take 30.6 ms

(800) – 1.21 Å take 15.3 ms

(1200) – 0.805 Å take 10.2 ms

Wavelength difference required ≈ 0.4 Å

Maximum wavelength in 1st frame 5.1 Å

Look to develop monochromator materials with desired properties

Extended λ range - bispectral extraction

Incoherent / inelastic scattering

Current model

Broadly similar to existing reactor instruments
Bispectral extraction
Longer primary flight path – 45m v 17m
Feeder plus half ballistic guide
Continuous takeoff angle
Larger 2D detector – 1 Sr cf. 0.28 Sr

Potential gains
Lower backgrounds (factor 1-1.5)
Multi-wavelength (factor 2-3)
Detector (factor 3.5)

Additional capabilities

TOF channel for energy dispersive measurements

Single crystal + texture measurements

Summary

- MODI is a flexible GPPD instrument optimised for powder diffraction and in situ processing
 - TOF detector channel is used for energy dispersive measurements (elastic or inelastic)
 - 2D detector allows texture and single crystal measurements
- MODI can profit from bispectral extraction to extend useable λ range
- MODI has an open sample space required for the use of complex in situ sample environments
- MODI matches detector coverage (±10°) to restricted geometries available for complex sample environments
- Possibility for diffraction farm
- Need to optimise the thermal moderator performance