THOR THe HORizontal Reflectometer

INSTRUMENT PROPOSAL

M. Strobl
Instrument Division
ESS AB

Contributing WU in NR WP

Table 4: Work Package breakdown structure for Instrument Concepts

lanag. IC1	SANS IC2	Reflectometry IC3	Macromol. Diffraction IC4	Single Crystal Diffraction IC5	Powder Diffraction IC6	Materials Engin. Diffraction IC7	Imaging IC8	Direc Spect
	Conventional SANS Full DU for fast conv. ext. q-range SANS, 29 PM, SD004DE/a	Horizontal Reflectometer Full DU for wide q and addons, 23 PM, SD003DE/a	Macromol. Diff. Fill DU, potent. farm SD036ESS	Magn. Single Crystal Diffractom. Full DU SD060ESS	Wide Band Powder Diffraction Full DU, wfm, gen. purp., 23 PM, SD005DE/a	Engineering Diffraction SPEED full DU plus prototyping tests, 57 PM, SD005DE/b	Multi Purp. HR Imaging Full DU in close collab. with CH, dark-field, Bragg edge, polarized 68 PM, SD006DE	Cold Spec Full DU, hiç pol. ca SD
	GISANS Full DU, potent.	Vertical Magnetism			Multi Purp. Extreme	CEED Full DU, tests, PM,	Larmor Label. Full DU, TOF DF imaging	Bis Ch

Activities on that concept started already in Ven (and earlier)

became German WU

Main contributions:

D. Nekrassov, M. Trapp, K. Lieutenant, J.-F. Moulin

R. Steitz, M. Strobl

published:

arxiv:physics.ins-det/1309.6215

THOR - User demand

3

D17, SuperADAM, Figaro

4

SURF, CRISP, INTER, Offspec, PolREF

5

N-REX+, MARIA, REFSANS, MIRA, TREFF

3

NGI, NG7, AND/R

THOR - Science case

High Q - monolayers

M. Skoda et al., *Langmuir* **2009**, *25*, 4056

P. Gutfreund, et al., J. Chem. Phys. **2011**, 134, 064711:

Silicon/**OTS**/liquid including roughness

$$d_{\text{OTS}} = 25\text{Å}$$

Unambiguous determination of thickness, i.e. decoupling of d and SLD

THOR - Science case

High resolution – hierarchical structures

Today: Limited to X-rays at air/liquid interface

Yang, B.; Holdaway, J. A.; Edler, K. J., Robust Ordered Cubic Mesostructured Polymer/Silica Composite Films Grown at the Air/Water Interface. *Langmuir* **2013**, *29*, 4148:

Tomorrow: Neutrons at air/solid, air/liquid and solid/liquid interfaces

THOR - Science case

High flux – kinetics of self-assembly

Costello, D. A.; Hsia, C. Y.; Millet, J. K.; Porri, T.; Daniel, S., Membrane Fusion-Competent Virus-Like Proteoliposomes and Proteinaceous Supported Bilayers Made Directly from Cell Plasma Membranes. *Langmuir* **2013**, *29*, 6409:

THOR - ESS Instrumentation

6m

THOR THe HORizontal Reflectometer

24.9m

25m

THOR - extraction

Would obviously benefit from pancake moderator solution!

THOR – loosing line of sight (twice)

THOR – bending on sample

(a) Horizontal beam profile at footprint slit

(b) Vertical beam profile at footprint slit 54.9m

THOR - choppers & resolution modes

THOR – add-on user options OffSpec/GISANS/hard matter

Figure 13: Illustration of expected (a) intensity distribution in the horizontal plane at collimator exit, (b) horizontal divergence (full beam) at sample position, (c) profile of the beam at the detector position.

THOR – detection

High flux mode a serious task for detector group (or is e.g. DENEX He3 sufficient) for high resolution (required when significant off spec intensities)

HZG detector development can be a feasible option (tests planned at ESS testbeamline)

Reflectivity

Residuals

THOR – performance

(a) The reflectivity of the NiTi sample

(a) Reflectivity of a D_2O surface measured with the single waveband

(b) Count rate achieved on a D₂O surface with the single waveband

(c) Reflectivity of a D₂O surface measured with the double waveband

(d) Count rate achieved on a D₂O surface with the double waveband

2deg, with bkg

q in 1/Å

-0.9 deg -2.7 deg -7.2 deg

- 0.3 deg

-0.9 deg -2.7 deg -7.2 deg

(e) Reflectivity of a Langmuir layer on null reflecting water measured with the single waveband (f) Count rate achieved on a Langmuir layer surface with the single waveband

THOR - Costing

THOR		cost estimate kEuro		
	Conventional			
	Infrastructure	 160		
	Extraction	 100		
	Guide / Optics	2700		
	Choppers	1500		
	Shielding	3020		
	Sample Area and			
	Sample			
	Environment	 1200		
	Detector(s)	500		
	Special Parts	760		
	Electrical			
	Engineering	 240		
	Computing	50		
	SUM	10330		
	Manpower*	3000		

THOR - Minimum risk

- Principal world-leading operation does not rely on any complex technical installation.
 - State-of-the-art technology/methodology
- Flexible resolution and performance even without WFM in place
 - Works also without beam bending (except free liquids)

• Sample translation stage (z)

Figaro: 500 + 32 mm

THOR: $\leq 2 \times Figaro$

Campbell et al., Eur. Phys. J. Plus (2011) 126: 107

Summary

THOR is an all-round instrument

Soft/hard matter, large range, high res, low res, medium res, $\theta/2\theta$, θ/θ , small samples, big samples, offspec, GISANS

focusing on our strengths

flexible, high flux, small samples, spectral range

but based on state-of-the-art technological solutions!

EUROPEAN SPALLATION SOURCE THOR

THe HORizontal Reflectometer

M. Strobl
Instrument Division
ESS AB

Chopper diameters

chopper system - risk

Lieber Markus,

Wir haben hier die Email diskutiert, prinzipiell erscheint uns alles gut machbar und ohne technische Schwierigkeiten.

Meine Kostenschätzung hat für das ganze System 1,260 k€ ergeben. Diese Kostenschätzung ist inoffiziell und erhebt keinen Anspruch auf Gültigkeit.

Ich denke, die Kostenschätzung ist relativ genau (+/- 10%), falls sich aus der späteren Spezifikation nicht noch spezielle Anforderungen ergeben..

Bei Bedarf würde ich auch ein offizielles Angebot machen.

Berno Spiegelhalder

Astrium GmbH