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The hadron intensity frontier
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ESS accelerator

Design Drivers:
High Average Beam Power
5 MW
High Peak Beam Power
125 MW
High Availability
> 95%

Key parameters:
-2.86 ms pulses
-2 GeV
-62.5 mA
-14 Hz
-Protons (H+)
-Low losses
-Low heat loss cryostats
for minimum energy
consumption
-Flexible design for
future upgrades




ESS Linac
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Elliptical Cryomodule
Components
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Figure 4.120: Helium vessel with hanging rod







Notes on Accelerator Design

 ESSis unique: Long pulse source

— Couples neutron instruments to accelerator — we have done this before
(more like a collider than we had realized)

— High quality beam (bright core) all the way to target: small changes in
beam transport can produce significant damage. Actively expanded in
old TDR design (quads & octupoles), and the new design (quads & fast
dipoles)

* Accelerator Design Update 2013

— Reduce cost: aggressive design
— Caused us to think about beam quality and rethink transport to target

* Small paintbrush (precision) vs. large (splat)

— Must be precise with 5 MW. Desire uniform core, well-controlled
edges.

— Sensitive to the smallest details (activation, neutron background). Can’t
predict details of beam distribution, so why magnify details?



Proton Beam Simulations

Transverse extent along linac Energy variation along linac

Energy ( MeV )

o s0 100 150 200 250 300 o 's0 100 150 200 250 300

Positson {m ) Position (m)

Ayisuap sjppJed pazijewlioN



L 14.8m

)

11.4m 4.0m o

A2T Layout in TDR

Fixed collimator

D dump line
AT sl

ACH 19.0m A“’ ‘

¢ s

29.1m _43.5

Target monolith
incl. Target wheel

SA dump line

Anne Holm - Arhus



Horizontal position [mm]

Vertical position [mm)]

500 -

400
300
200
100

—100
—200
—300
—400

—500 -

150
100
50

—50 -

—100
—150

A2T Proton Optics in TDR

— 10 ——10?
10% — 104
—10° —10°

Power level [W]

Collimator- - - - - - JJ_

(|
I I L
| | | |
| | | |
o —LI
Dipoles Octupoles
0 20 40 60 80 100 120 140

160

0 20

40

60

80

100 120 140

160



A2T Design Update
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Beam on Target
<J>, . = 55.6 nA/cm?®

e 2 GeV protons (was 2.5 GeV) Bl s N
e 62.5 mA (was 50 mA) X
* Pulsed: 5 MW average, 125 MW peak

 Expanded: from ~2 mm RMS to

160 by 60 mm footprint on target 55 uA/cm”2
nominal density
on target

 Beam rastering is now baselined



A2T Enclosure Development




5M Particles from Latest SCL

* Initial raster design, but similar to current reference design - No lost particles
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Target

* Analysis of reference raster design:

— Current aluminum window design OK for nominal beam. Survives
full unrastered pulse, but replacement recommended.

— Initial analysis of Titanium window: OK for nominal beam. Survives
one full unrastered pulse with no need for replacement.
* Rastering helps and introduces no significant issues

For 62.5 mA beam at proton beam window:

.

- -

Window analysis

Octupole 2012: 105 pA/cmA2

Raster 2013: 88 pA/cm”2
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== Target: rastering is preferred;
reduced heating

Target Analysis: Pitcher, Sabbagh, Takibayev (also neutronics), et. al.



Neutron Instruments

* Only the shortest wavelengths of thermal spectrum are
noticeably affected

— No showstoppers identified
— Brainstorming about potential opportunities

Thermal: more modulation
(correct, average away, or
ignore)

3.0 4

Cold: very little modulation (less than
proton intensity fluctuations)
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Neutron Instruments: Rastering is supported; Reduced
background, possible opportunities.

Assessment: Henry, Bentley, Anderson, ESS instrument scientists, et al.



Alternate neutron pulse shapes

Fast raster
“A” Pulse: m
modulation
“B” Pulse:
inverted modulation W

Result:  p—
Bin A and B together

Or bin A and B separately to
retain shape
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Slow raster
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horizontal raster:
pulse shaping
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Monte Carlo Simulations for ESS Linac

 We use MARS monte-carlo code (similar to
GEANT, FLUKA, MCNP) for accelerator related
calculations.

* Current layout of entire ESS linac is modeled
including a simplified target at the end.

e Early results have already driven some design
changes



Supporting Beam Loss Monitor Design
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Revised Stub Design
Old New




Geometry Model of the Linac

Cross-section (XY) View at a stub location
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11 HB and 4 MB stubs are included in the model.



Monte Carlo Simulations for skyshine
calculations

* Ten 1 km layer of atmosphere is Side (X2) View at y=0
included in the model.

* Various energy neutrons escaping
the linac shielding are saved in a
source term for skyshine
calculations. Lokm

e Skyshine is calculated across the ESS r
site. List of some of the parameters
calculated are given below.

— DET (dose equivalent total), S0 asear® 00a0°  asonc?
— FLN (total neutron flux), e
— FLN>E (neutron flux above energy E).

5 km

cm
1.00x106 -




An example of dose rate map across
the ESS site

Contribution from the straight

section of the linac is calculated so

far.

Normal operations 1 W/m losses
are assumed (goal: 0.1 W/m).
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Neutron flux (total) across the ESS site

FLN (1/cm2 s)
TOP View at x=56 m
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Neutron fluxes above certain thresholds

FLN>30 MeV (1/cm2 s)
TOP View at x=5 m
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Next steps

A2T side view

cm

* Include A2T area in skyshine

calculations. 800.
 Model neutron bunkers at

various locations across the 0

site.

e (Calculate neutron fluxes -800-
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communication performance
is correlated with
technical performance*

*Allen, Goldhar, Baker, 1964 and on




Closing thoughts

* Accelerator design - end to end simulations
— Tradition: from source to target
— Goal: from source to sample

e Good start on communications between
accelerator, target and neutron instruments

— Will be challenging to keep it up as project pressure
builds

— But important for long pulse source. Also fun.
* Other opportunities

— Resource sharing during construction
— Accelerator experts help with instruments



