

DEMAX Activities, collaborations, projects

Hanna Wacklin-Knecht, Zoe Fisher, Anna Leung, Oliver Bogojevic

DEMAX & the ESS instrument suite

EUROPEAN SPALLATION SOURCE

2

Chemical Deuteration:

- Synthesis of surfactants and lipids
- H/D exchange, chemical synthesis, purification and analysis

LENS

- Enzyme immobilisation and enzymatic catalysis
- Lipid purification/analysis from biomass

Biological Deuteration:

- **Protein & lipid biodeuteration**
- Cell culturing of bacteria, yeasts, algae
- Protein purification/characterisation
- **Protein crystallisation**

Collaborations

- SINE2020 & DEUNET
- Brightness²
- LENS WG3

Grant Projects:

- LU VR grant
- LU PhD student projects

LUND UNIVERSITY

Deunet 2020

brightness²

Method of reducing deuterated carboxylic acids to deuterated alcohols without $LiAlD_4$ (no longer commercially available!):

lauric acid- d_{23}

Synthesis of chiral amino acid surfactants

Chemical Deuteration

EUROPEAN

SPALLATION SOURCE

The enzymatic synthesis of perdeuterated D- and L-lactic acid-d4 and polymerisation of their lactides to polylactic acid.

SINE2020 WP5: Immobilised enzyme catalysis for biopolymer synthesis

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654000

Chemical Deuteration

Chemical Deuteration

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654000

Enzymatic Synthesis

- **CLEAN and GREEN few by products/no toxic chemicals** +
- **Highly specific shortens reactions/purifications** +
- Immobilised enzymes can be reused +
- **Application to lipid deuteration:**
- different enzymes attack selectively in different positions
- Can be used to swap d-fatty acids h-fatty acids

Commercial enzymes available:

- Lipases (1,3 specific), PLA₂, PLA₁

- WP2 A strategy to deliver neutrons for Europe and beyond
- Task 2.3B: Deuteration For Soft Matter and Life Sciences ESS-STFC i) chemical and/or microbial production of perdeuterated fatty acids and lipids, followed by ii) enzymatic synthesis of complex novel deuterated compounds.

EUROPEAN

SPALLATION SOURCE

Chemical Deuteration

Immobilised enzymes for lipid synthesis – Oliver Bogojevic

BrightnESS² is funded by the European Framework Programme for Research and Innovation Horizon 2020, under grant agreement 823867

Combined enzymatic/chemical approach for facile POPC synthesis (100mg):

Lipid Extraction, purification, analysis Biodeuterated lipids from Pichia Pastoris yeast biomass

EUROPEAN SPALLATION SOURCE

R.Delhom ESS/ILL PhD 2014-2017

Current capabilities:

- ✓ Total lipid extracts
- ✓ Non-polar lipid separation
- ✓ Total phospholipid extracts
- ✓ Sterols
- ✓ Analysis, %d (TLC, GC, MS)

On-going:

- Separation of phospholipid classes
- Reverse-phase HPLC

Effect of carbon source on lipid composition

d-ergosterol

Extracted products: recombinant proteins (E. coli), total lipid extract (P. pastoris)

Туре	How?	Level of D incorporation	Application	\$
H/D exchange	In vitro	25-30% labile H	Crystallography	\$
Partial deuteration	In vivo	65-80 % (unlabeled C-source, recycled or fresh D_2O)	Matched-out product for SANS, NR, crystallography – spectroscopy? imaging?	\$\$
Perdeuteration	In vivo	Minimal media, D-carbon source, fresh D_2O	SANS, NR, crystallography, spectroscopy, QENS, NSE etc.	\$\$\$
Perdeuteration	In vivo	Rich media, D-algal extract, fresh D_2O	SANS, NR, crystallography, spectroscopy, QENS, NSE etc.	\$\$\$

Biological deuteration

EUROPEAN SPALLATION SOURCE

– projects with LP3, Katarina Koruza, Manuel Orozco (LU), Akos Vegvari (KI); LANL (algae)

Developed cost-effective methods to maximize protein yield and D-incorporation in *E. coli*, including biophysical characterization of recombinant proteins

Contents lists available at ScienceDirect

Archives of Biochemistry and Biophysics

journal homepage: www.elsevier.com/locate/yabbi

Deuteration of human carbonic anhydrase for neutron crystallography: Cell culture media, protein thermostability, and crystallization behavior

K. Koruza^a, B. Lafumat^a, Á. Végvári^b, W. Knecht^a, S.Z. Fisher^{a,c,*}

^a Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, Lund 22362, Sweden ^b Department of Medical Biochemistry & Biophysics, Karolinska Institute, Scheeles vig 2, Stockholm 11717, Sweden ^c Scientific Activities Division, European Spallation Source ERIC, Tunavägen 24, Lund 22100, Sweden

Growing algae as source of D-nutrients for rich broth preparation. Presently: *Botryococcus braunii* Coming soon: *Scenedesmus obliquus*

Yeast – growing *P. pastoris* under perdeuterated conditions for total lipid extract *Future: protein expression*

Lipid BioDeuteration in yeast Yeast cell cultures and biomass production at LP3

Yeasts contain all major lipid phospholipid classes (PC, PE, PI, PS, CL), sterols, glycerolipids, sphingolipids

Composition depends on

- i) Species and strain
- ii) Growth conditions
- iii) GM

Pichia pastoris

Widely used for protein and lipid production

Rhodotorula glutinis Oleaginous yeast, high producer of triglycerides

Candida glabrata Human pathogen, drug resistance model

Current capabilities:

- ✓ Shaker flask cultures
- ✓ Up to 500mg per-deuterated total lipid extracts from P. Pastoris
- ✓ Up to 50mg perdeuterated lipid extracts from C. glabrata On-going/next steps:
- Growth conditions for oleaginous yeasts (e.g. R. glutinis)
- Optimisation of lipid production in bioreactors (pH control)

Lipid BioDeuteration in yeast Oleaginous yeasts for glycerolipid production

Oleaginous yeasts can produce up to 60wt% as storage fats – mainly triglycerides

FA composition depends on

- i) Species and strain
- ii) Growth conditions

Control of pH and nutrients important for high-fat content - fermentor cultures

Hydrogenated Rhodotorula glutinis

Rhodotorula glutinis Oleaginous yeast, high producer of linoleic acid

Current capabilities:

- ✓ Shaker flask cultures
- ✓ Fermentor cultures (¹H) of *R. glutinis and P. Pastoris* On-going/next steps:
- Growth conditions for further oleaginous yeasts (e.g. Yarrowina)
- Optimal carbon source €€€
- Selection of strains suitable for perdeutration

EU Internship chem lab assistant from Berlin LM School August 2019 for lipid analysis

Crystallization – large single crystals (> 0.5 mm3 today)

• Xtallisation: micro & macroseeding, crystal feeding, dialysis, large volume sitting drop vapour diffusion, (macro)batch (with/out oil), temperature control/pH/precipitant

<u>Characterization of proteins</u>: ESI-MS & MALDI-TOF (D-incorporation, intact mass), DLS, Nanotemper Thermofluor (stability, aggregation), low and high-throughput screening (Oryx8, Mosquito, by hand), large crystal growth, X-ray testing/data collection at BioMAX.

Crystallization – methods developed & services offered (in collaboration with LP3)

- Systematic optimization, phase diagram mapping, microseeding, batch methods.
- Making complexes with ligands: soaking vs. dry cocrystallization

. . . .

Article

From Initial Hit to Crystal Optimization with Microseeding of Human Carbonic Anhydrase IX—A Case Study for Neutron Protein Crystallography

Katarina Koruza ^{1,*}¹⁰, Bénédicte Lafumat ¹, Maria Nyblom ¹, Wolfgang Knecht ¹ and Zoë Fisher ^{1,2,*}

Collaborations

2015-2019

WP5 Chemical Deuteration (ESS, ILL, STFC, FZJ)
DEUNET
WP6 XTALGEN (ILL, ESS, FZJ)
Phase diagram characterisation for proteins (ESS, FZJ)

WP2 A strategy to deliver neutrons for Europe and beyond
Task 2.3B: Deuteration For Soft Matter and Life Sciences ESS-STFC
i) chemical and/or microbial production of perdeuterated fatty acids and lipids, followed by
ii) enzymatic synthesis of complex novel deuterated compounds.

WG3 Working Group 3: Synergies in technological development and operation - Task 3.x Deuteration Technologies (Chem, Bio, Xtal) ESS, ILL, STFC, FZJ

DEUNET – SINE2020 Sustainability report

EURO SPAL SOUF

EUROPEAN SPALLATION SOURCE

DEUNET achievements enabled by SINE2020:

- 1. Establishment of a new chemical deuteration laboratory at ESS
- 2. Access to STFC deuteration facility to European users
- 3. Development of methods for lipid deuteration, and separation from cell cultures at ILL
- 4. R&D in enzymatic and chemical synthesis of chiral biopolymers and lipids at FZJ and ESS.

Currently funded ESS	FTE	STFC	FTE	ILL	FTE	FZJ	FTE
2 scientists	2	4 scientists	4	1 technician	0.2	-	-
		1 technician	1				
		2 Post-docs	2				
		3 PhD students	2				

Conclusions and recommended actions:

1) Continued staffing resources for a sustainable DEUNET

- 2) Inclusion of biodeuteration/macromolecular crystallisation facilities in DEUNET
- 3) Continued R&D and international networking to facilitate innovation in neutron science
- 4) A cross-facility working group on inter-facility access to deuteration

DEUNET – Deuteration Network - next meeting 25-26 April Lund @ LINXS

EUROPEAN SPALLATION SOURCE

New members: ANSTO NFD, JPARC-MLZ, LP3

DBI Net possible new collaboration with ORNL/US deuteration

Larodan Lipids first industrial partner interested in distributing deuterated (and non-deuterated) products

Discussion on post-SINE2020 DEUNET and LENS

Continuation funding – seeking opportunities for new projects

Australian Governmen

A sustainable DEUNET

WG3 : Synergies in technological development and operation - Task 3.x Deuteration Technologies (Chem, Bio, Xtal) ESS, ILL, STFC, FZJ

- 4 Pillars:
- chemical deuteration
- biological deuteration
- macromolecular crystallisation
- networking and synergies

Priorities aligned to outcomes of SINE2020 WP5 and WP6:

- 1. Identifying new R&D projects and collaborations aligned to future research themes and priorities in Europe
- 2. Networking with international deuteration facilities
- 3. Cross-facility working group on deuteration user access in Europe

Lipid composition and antibiotic resistance in C. glabrata (0.3FTE HWK) 3-year project funded by Swedish Research Council VR grant nr. 2016-01164 (2017-2020)

iRNA used to up/downregulate genes – strains chosen for increased/decreased Amphotericin B resistance

Alterations in sterol biosynthesis lead to accumulation of squalene - NR show SQ to be located in the centre of membranes where it prevents AmB insertion.

GC-MS difficult to access in LU teaching labs

User-provided strains can be cultured, but further GM work would require a molecular biologist.

W. Knecht (Olena Ishchuk)

Candida glabrata Human pathogen

min

18

Squalene

Detailed GC-MS analysis at LU to identify ergosterol precursors (and to quantify deuteration)

Reconstitution and function of human DHODH in membranes (Manuel Orozco PhD LU 2018-2022)

• Purification of full length DHODH and solubilisation with DDM for SANS and NR studies

Reconstitution of full-length DHODH into supported lipid bilayers by detergent/lipid micelle adsorption monitored by QCM-D. *Left*: lipids only (80% POPC, 10% cardiolipin and 10% Q_{10}). *Right*: lipids and DHODH (10:1 mol/mol).

of lipid-DDM reconstitution process into supported lipid bilayers

LUND UNIVERSITY

Questions to STAP:

- Commercial access to deuterated products?
- i) For industrial neutron users
- ii) Sale of products to commercial vendors

E.g. Larodan Lipids (SE) is interested in purchasing or distributing excess deuterated (and nondeuterated) products from DEMAX.