

FREIA Laboratory

Facility for Research Instrumentation and Accelerator Development

Status of the FREIA Test Stand

FREIA Laboratory

Facility for Research Instrumentation and Accelerator Development

Competent and motivated staff

collaboration of physics (IFA) and engineering (Teknikum).

State-of-the-art Equipment

cryogenics

- liquid helium
- liquid nitrogen

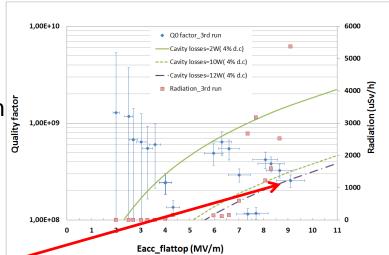
control room

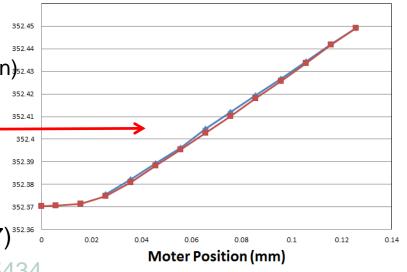
- equipment controls
- data acquisition

radio-frequency (RF) power sources

3 bunkers with test stands horizontal cryostat

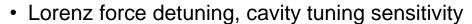
vertical cryostat

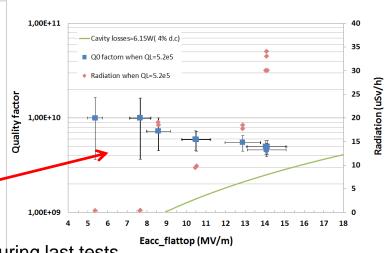


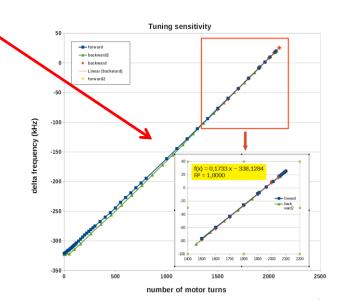

Double Spoke Cavity Package (2017)

- Test from March May 2017
- Warm
 - RF conditioning with IPNO then FREIA system
 about 30h; multipacting in 20-60 kW region

 - max 120 kW forward power (limit set by IPNO)
- Cold
 - RF conditioning with FREIA system
 - about 30h; 3 major multipacting regions
 - RF testing
 - $Q_0 = 2.6 \times 10^8$ at 9 MV/m (w/ heat load corrected n) 352.43
 - Lorenz force detuning ~400 Hz at 9 MV/m
 - cavity tuning sensitivity = 150 kHz/mm@2K
 - pressure sensitivity = +27.1 Hz/mbar
- Final status/results
 - results presented at SLHiPP-7 (9 June 2017) 5223 5
 - full report published: urn:nbn:se:uu:diva-335434

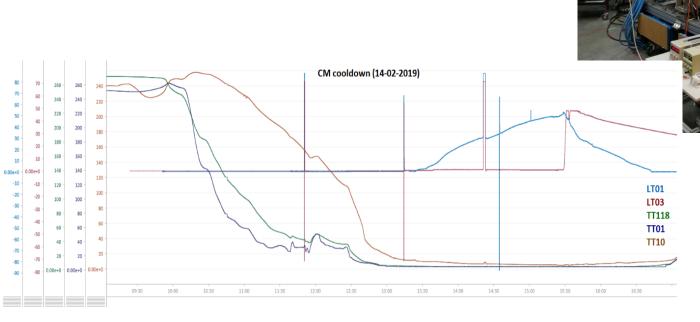



High-β Elliptical Cavity Package (2018)



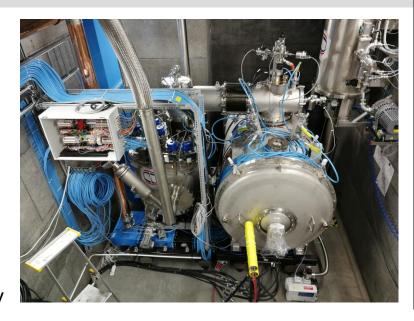
- 1st run in June 2018
- Warm-up and open to fix tuner problem
- 2nd run in August 2018
 - cooldown, then RF re-conditioning at cold
 - measurement
 - Q₀ preliminary result >10⁹
 - not much multipacting, cavity and coupler very quiet during last tests

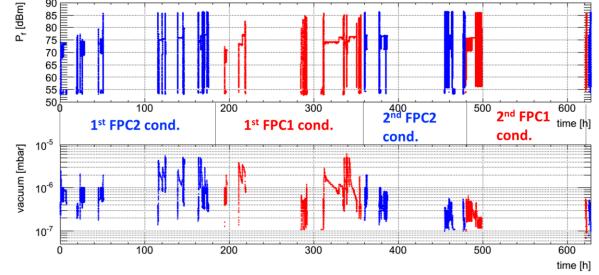
- lost some motor steps during 1st movement, others ok
- test of new electronics for cold tuner system as being developed by our Polish colleagues
 - preliminary satisfied with the results
- Final status/results
 - cavity back to CEA, modulator/klystron to ESS
 - results presented at SLHiPP-8 (12 June 2018)
 - full report published: <u>urn:nbn:se:uu:diva-371627</u>



Spoke Valve Box Prototype (2019)

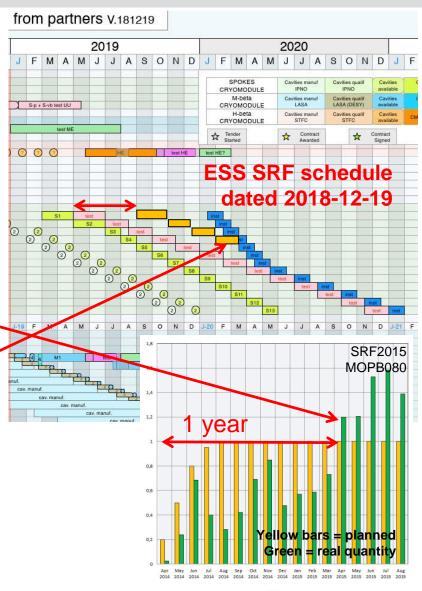
- cryo test run with simulator (Dec + Jan)
 - commissioning controls & functionality test
- thermo-acoustic oscillations
 - installed RLC-circuit to damp the oscillations (test with cryomodule cool down)




Spoke Cryomodule Prototype (2019)

- RF conditioning (warm)
 - took about 77 h run time (627 h real time)
 - 1st conditioning ~50 hours
 - 2nd conditioning ~20 h (cross-contamination)
 - MP bands were consistent with HNOSS test
 - strength of MP levels depends on pulse length, 1st and 2nd conditioning...
 - fully automatic system conditioning system
 - commissioned, now implemented to run 24h/day

Cooldown will start this week ...



Series Spoke Cryomodule Testing (13x)

- Acceptance testing of 13 cryomodules
 - best estimate: 6 weeks/module
 - ESS schedule:
 - 4 to 6 weeks/module,
 - 8 weeks for cryomodule S1,
 - driven by installation planning
 - DESY experience:1 year to reach "full speed"
- Present planning
 - first series cryomodule arrives in Summer (4 months delay compared to Dec.2018)
 - will "hit" installation schedule by S3 or S4 (transportation!)

Cryomodule Test Schedule

	time [days]	time [weeks]	in bunker [days]
Arrival, unpacking, initial inspection	2.5		
Installation, connection to valve box	5.0		5.0
Warm test	2.0		2.0
Cool down	2.0		2.0
Cold test	5.0		5.0
Warm-up*	4.0		4.0
Disconnect, packing, shipment	4.5		3.0
TOTAL	25.0	5.0	21.0
Spare and wasted time, 20% (DESY statistics)	5.0		4.2
GRAND TOTAL	30.0	6.0	25.2
			= 4 to 5
Time given in 8h work days, 1 shift/day. Not including weekend, holidays and vacation. *) Warm-up is shorter if during weekend			weeks

Cryomodule Test Plan Draft

Warm Test	Cool Down	Cold Test	Warm-up	
✓ Central cavity frequency ✓ Q _{ext} ✓ Coupler warm conditioning	✓ Frequency shift vs. temperature	✓ Coupler cold conditioning	✓ Frequency shift vs. temperature	CRYO
		✓ Cavity conditioning		VNA
		✓ Central frequency✓ Loaded Q and Q_{ext}		
		✓ Steady heat load		SGD signal
		 ✓ Q₀ ✓ Dynamic heat load ✓ Reach 12 MV/m 		generator driven
		✓ Tuning range of the slow step tuner		SEL
		✓ Stabilization of the cavity field with		
		LLRF using only RF compensation / with fast piezo		Lund LLRF

NOTE: final optimized & minimized list under discussion (ESS/IPNO/UU)

Foreseen & Unforeseen Issues

- Operations take longer time than scheduled
 - RF conditioning scheduled for 2 days, present indication 3 to 4 days
 - discussing mitigation by conditioning both couplers simultaneous and improving vacuum pumping possibilities
- No staff for 24h operation
 - partly mitigate by automatic operation for RF conditioning, cool down, warm-up
 - SSM authorization does not allow un-attended operation if producing radiation
- Not sufficient staff resources for high-peak workload
 - difficult to find replacement for high power RF & electronics engineer
 - several engineers working part-time (at/near retirement)
- No time allotted for re-test or failure
 - also: no space at Uppsala to "store" extra cryomodules
- No time allotted for vacation
 - also: multiple sick-leave will squeeze staff resources

Summary

FREIA Cryomodule Test Stand up and running!

- procedures developed and tested on HNOSS
- procedure validation and optimization ongoing on prototype
- strongly motivated personnel to make it work
- support from ESS and IPNO when needed (RF/SRF/vacuum/...)

BUT:

tight in scheduled time & available resources

