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“I feel that if it were possible for those far-seeing
men who founded this Institution to come amongst
us to-day, they would consider that the great heritage
which they left us has been fully preserved.”

Training of Mercantile Marine Officers

SoME important recommendations for the better
training of apprentices for sea service are contained
in & report just issued by an Advisory Committee
to the Manning Committee of the Shipping Federa-
tion. To qualify for the position of a junior officer
in the British Mercantile Marine, it is necessary to
serve an apprenticeship of four years, or three years
if a boy has passed through the Conway, or Worcester,
or Pangbourne College, and to pass the Board of
Trade examination for second mate. At present,
there is no recognised course of instruction or any
uniformity in training for apprentices or cadets, and
very often it is only with the greatest difficulty that
apprentices prepare themselves for examination.
Some shipping companies have special schemes of
training ; but such is not the general case. It is now
proposed that a Central Board of Control should be
set up with the power to draw up a standard syllabus
of instruetion, to set annual examination papers,
to give practical advice to captains of ships in matters
of education, to appoint local boards of examiners
and to publish periodical statistics relating to the

wear, valve seat wear, bearings, oil consumption,
piston temperatures, brakes and other matters, and
from these valuable information has been obtained.

Battery-Electric Cars

A¥TER many years of almost suspended animation,
the battery-electric vehicle industry is showing signs
of life. At the Exide motor show, Mr. D. P, Dunne
stated that the monthly ountput of these vehicles in
Great Britain is larger than it has ever been before.
Compared with petrol vehicles, they make less noise
and produce less atmospheric pollution. Statistics
prove that their life is much longer and their main-
tenance is much less than that of any other form of
mechanically propelled road wvehicle. Several cor-
porations are using electric vans in connexion with
their electrical apparatus hiring schemes, The West
Ham undertaking has vans with a speed of 20 miles
per hour and a range of 50 miles per charge. They
use an electric motor coupled to the back-axle through
differential gearing. The charging arrangements are
quite simple : a ‘jack’ is provided on the dashboard
for connecting with the mains and there is an auto-
matic control to limit the rate of charging. This
undertaking has introduced a night tariff of 0-66d.
per unit for vehicle charging. In certain cases, such
vehicles will prove more economical than petrol vans,



Energy storage - batteries
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Energy storage - batteries

Li-lon battery
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ROOM FOR IMPROVEMENT

» Thermal runaway

» Recycling
> Life cycle
» Cost

Co: 41,850 US$/ton

large scale
energy storage
system

» Energy density
» Charge rate
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Electrolytes for next generation batteries
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Properties?
d Thermally stable

d Electrochemically stable
(large voltage window)

1 High conductivity
dCost
Q...

Materials”?

 Organic solvents

d Polymer membranes & gels
O Ceramics/glasses
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IONIC LIQUIDS

Only ions !
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IONIC LIQUIDS

Salt/IL T, ¢ C)
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KCl 772
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IONIC LIQUIDS

 Bulky
d Asymmetric

dWeakly coordinating
dFlexibility in the design
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IONIC LIQUIDS
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|IONIC LIQUIDS

»Wide liquid range

»High ionic conductivity
»Non-volatility

»Low vapour pressure

» Thermal stability (> 200C)

» Electrochemical stability (>4 V)
»Non-flammability
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IONIC LIQUIDS

Solid Liquid
Gas
Melting point (T,,) Decomposition (T)

E i |
f | | > T

Glass transition (T,)

» No/small vapour pressure — decomposition before boiling

» Many ILs are easily supercooled — crystallization can easily
be avoided



lonic liquids for energy applications

Aleksandar Matic and Bruno Scrosati, Guest Editors

There is an urgent need for new energy storage and conversion systems in order to tackle
the environmental problems we face today and to make the transition to a fossil fuel-free
society. New batteries, supercapacitors, and fuel cells have the potential to be key devices
for large-scale energy storage systems for load leveling and electric vehicles. In many cases,
the concepts are known, but the right materials solutions are lacking. lonic liquids (ILs) have
been highlighted as suitable materials to be included in new devices, most commonly as
electrolytes. Attractive features of ILs such as high ionic conductivity, low vapor pressure,
high thermal and electrochemical stability, large temperature range for the liquid phase, and
flexibility in molecular design have drawn the attention of researchers from many different
fields. In addition, there is the possibility of designing new materials and morphologies using
electrochemical synthesis with ILs. In this article, we provide an introduction to ILs and their
properties, serving as a base for the topical articles in this issue.

MRS BULLETIN - VOLUME 38 - JULY 2013 -




Electrolytes tor
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lon transport — conductivity

lon transport strongly coupled to viscosity
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Conductivity (Scm'1)
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Interactions

Van der Waals




Interactions
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Conductivity (Scm™)

lon transport — conductivity

Small ions -
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IL cations resemble surfactants!
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NANO-STRUCTURE IN ILs
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NANO-STRUCTURE IN ILs

d Distinct peak in SAXS (or SANS)
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Nano-structure in IL electrolytes

— PyR, TFSI
— C MImTFSI
n=8

e

\ Ordering of

apolar domains

Intensity

" Charge ordering

Phys. Chem. Chem. Phys., 2015, 17, 27082



Structuring in ionic liquids electrolytes
Temperature dependence of S(Q) — changes below T,
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J. Phys. Chem. B 2013, 117, 2773-2781.



lon transport
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Understanding ion transport in ionic liquids requires
looking at the dynamics on relevant length scales
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EVEN |F WE'RE
JOKING, THIS SAYING
IS WELL-KNOWN
AND iT'S GENERALLY
CORRECT

WE EXPLAIN
TO YOU WHY..

rNicolas,physidsg
THE NEUTRON ALLOWS US TO DETERMINE:

The organization of atoms * The individual and collective
and the position of each one movements of atoms* and

The orientation and power of small
magnets carried by atoms * in
magnetic materials.
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Scattering experiment

In the experiment we measure the double
differential scattering cross section detector

ki, E;

2o 40 scattered beam

HK2dw ko, Eo 20 ko, Eg
————---- - e P
) incident beam transmitted beam
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total scattering cross section

2 :
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p(r0)p(r'+rt))=S(Q.0)  Dynamic structure factor

g(rit)= %fdr’<p(r’,0)p(r’ + r,l)>

g(rt) & S(0,w) (Fourier transforms)




g(r,t) — structure & dynamics
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g(r,t) — structure & dynamics

ISR £33 )

Dynamics!
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Scattering experiment

detector ,
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Scattering experiments - dynamics

Example: Liquid like diffusion / Brownian dynamics
DO?
w? +(DQ2)

- 2
gs(r-1) = (47D1) 3/2exp{_ﬁ} = Sinc(Q,a))=%
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-10 -5 (% 5



S(Q,w)

Scattering experiments - dynamics

Example: Diffusive dynamics / Brownian motion

_ 2 DO?
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w2+(DQ2)
|
S(Q,w)= S(Q.,t)xexpi-t/T T =
(@)= S(@)xexw-1/r) =
Aw=DQ? \
S
A
| | | |
! ! : ' 0.0 0.1 0.2, 0.3 0.4 0.t
-10 -5 (% 5 10 time
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Neutrons for studying IL-dynamics”

d Microscopic dynamics
 Relevant length & time scales

 Deuteration to look at either
collective or single particle
dynamics

¢

Deuteration
H:6.,=1.8 0,,=80.2
D: 6.,1,=5.6 ©,,=2.0




Neutrons for studying IL-dynamics”

d What is the link between
microscopic dynamics & ion
conductivity?

4 How is the dynamics influenced :
by the nano-structure in the liquid
- residence time in cluster/life time
of cluster?




Microscopic dynamics in ionic liquids

Q Fast dynamics (few ps) so 0,9 o
- rotations, librations, .. - '@%}f%@
Jd Intermediate dynamics (100 ps) iy, @ o O@o

- residence time / cluster dynamics

d Slow dynamics (1-100ns)
Diffusive/translational =




E /meV

Microscopic dynamics in ionic liquids
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Microscopic dynamics in ionic liquids

INS — TOF Spectrometer IN16B — Backscattering
(resolution 50-100 peV) (resolution 1 pyeV)

INT6B Hr
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Microscopic dynamics in ionic liquids

IN5S/ILL — TOF Spectrometer
(resolution 50 — 100 peV)

——data
—— data fit

delta convoluted resolution
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IN16B/ILL — Backscattering
(resolution 0.3 — 2 pyeV)

——data
——data fit i
delta convoluted resolution




Microscopic dynamics in ionic liquids
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Microscopic dynamics in ionic liquids
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1(Q,1)/1(Q,0)

Microscopic dynamics in ionic liquids

NSE (NIST) — Spin Echo
(10 ps— 100 ns)
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Microscopic dynamics in ionic liquids?
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L. Aguilera, J. Verwohlt, C. Gutt, A. Faraone, A. Matic, to be published



Similarity to OH-bonded liquids
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Summary

d With neutrons we can probe dynamics in ionic liquids
on relevant length scales

d Combination of several instruments required

O Complex dynamics — local motion to long range
diffusion
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SCIENTIFIC REPg}RTS

OFEN Jonic Liquids: evidence of the
viscosity scale-dependence
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lon Dynamics in lonic-Liquid-Based Li-lon Electrolytes
Investigated by Neutron Scattering and Dielectric
Spectroscopy
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Peter Lunkenheimer*® Shena Dai.**® and Xiao-Guana Sun*?

J. Phys. Chem. B 2009, 113, 8469-8474 8469
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Temperature Dependence of the Primary Relaxation in 1-Hexyl-3-methylimidazolium
bis{(trifluoromethyl)sulfonyl}imide

Olga Russina,” Mario Beiner,” Catherine Pappas,® Margarita Russina,® Valeria Arrighi,"
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Summary

d With neutrons we can probe dynamics in ionic liquids
on relevant length scales

d Combination of several instruments required

O Complex dynamics — local motion to long range
diffusion

d Complementary techniques
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lon transport

lons transport sum of diffusion of 10
anions and cations (D.and D,)
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Summary

d With neutrons we can probe dynamics in ionic liquids
on relevant length scales

d Combination of several instruments required

O Complex dynamics — local motion to long range
diffusion

1 Deuteration

d Complementary techniques
- XCPS same length scales (but risk of beam damage)
- Light scattering with probe particle
- NMR (long range diffusion, species sensitive)
- Conductivity (macroscopic)
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Tuning interactions — dynamics

Apolar domains (Q=0.3 A"")
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