

EUROPEAN SPALLATION SOURCE

The European Spallation Source: The Next-Generation Neutron Science Facility

FASEM course LINXS 16th May 2019

Ken Andersen, Neutron Instruments Division, European Spallation Source ERIC

Ken Holst Andersen – Curriculum Vitae

800 MeV proton synchrotr

ISIS Facility

- 1988-1992PhD in Physics in elementary excitations in superfluid ⁴He from Keele
University (UK) with ILL studentship
- 1992-1994 Post-doc at KENS (Japan) on percolating antiferromagnets
- 1995-1999ILL (France) Instrument Scientist for D7 diffuse-scattering
diffractometer with polarisation analysis
- 1999-2002 ISIS (UK) Instrument Scientist for OSIRIS backscattering spectrometer with powder diffraction
- 2002-2010 ILL (France) Head of Neutron Optics Laboratory
- 2010- ESS (Sweden) Neutron Instruments Division Head
- 2012- University of Copenhagen Adjunct Professor

Institut Laue-Langevin

European Spallation Source

The first neutron source

EUROPEAN SPALLATION SOURCE

James Chadwick: used Polonium as alpha emitter on Beryllium

⁴He + ⁹Be \rightarrow ¹²C + neutron

Evolution of neutron sources

(Updated from *Neutron Scattering*, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Nuclear Fission

EUROPEAN SPALLATION SOURCE

two daughter nuclei

Evolution of neutron sources

(Updated from *Neutron Scattering*, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Evolution of neutron sources

(Updated from *Neutron Scattering*, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Nuclear Spallation

Evolution of neutron sources

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Evolution of neutron sources

EUROPEAN SPALLATION SOURCE

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Neutrons are special

- charge neutral: deeply penetrating
 ... except for some isotopes
- nuclear interaction: cross section depending on isotope (not Z), sensitive to light elements.
- spin S = 1/2: probing magnetism
- unstable $n \rightarrow p + e + \underline{v}_e$ with life time $\tau \sim 900s$, $I = I_0 e^{-t/\tau}$
- mass: n ~p; thermal energies result in non-relativistic velocities.
 E = 293 K = 25 meV,
 v = 2196 m/s , λ = 1.8 Å

WHERE ARE THE ATOMS AND WHAT DO THEY DO?

Why neutrons?

Contrast variation

When the monster came, Lola, like the peppered moth and the arctic hare, remained motionless and undetected. Harold, of course, was immediately devoured.

Contrast variation

When the monster came, Lola, like the peppered moth and the arctic hare, remained motionless and undetected. Harold, of course, was immediately devoured.

e.g. proteins in a deuterated lipid matrix: by changing solvent from H_2O to D_2O can mask out lipid contribution.

Contrast variation with stable Deuterium isotopes can selectively highlight features in organic & biological materials

Examples for Neutron Diffraction

magnetic structures

hydrogen in organic materials

Neutron Spectroscopy discovers when superconductivity and magnetism (maybe) fall in love

Magnetic and superconducting energy scales are related. Neutrons see magnetism but no superconductivity (directly) Though they discover the symmetries and the coupling.

Lighting New materials ESS Food Solar energy Medicine **Tailor made** Mobile Cosmetics materials phones Pacemakers Transportation **Bio fuels** Implants Geo science

pinat.

Journey to deliver the world's leading facility for research using neutrons

2025 ESS Construction

Phase Complete

2014 Construction Starts on Green Field Site

2009 Decision to Site ESS in Lund

European Design of ESS

Completed

2003

2012 ESS Design Update Phase Complete 2023 ESS Starts User Program

2019 Start of Initial Operations Phase

The ESS Project

The ESS Project

Sweden and Denmark:

47,5% Construction 15-20% Operations Cash ~100%

1843 M€ construction 140 M€/yr operations URCE

Partner Countries:

52,5% Construction 80-85% Operations IKC/Cash ~ 70% / 30%

Construction and Operations Budgets

Organisation and People

Partner institutions delivering the design & construction of ESS

Aarhus University Atomki - Institute for Nuclear Research Agder University **Bergen University CEA Saclay**, Paris Centre for Energy Research, Budapest Centre for Nuclear Research, Poland, (NCBJt CERN, Geneva **CNR**, Rome **CNRS Orsay, Paris** Cockcroft Institute, Daresbury **DESY**, Hamburg **Delft University of Technology Edinburgh University** Elettra – Sincrotrone Trieste ESS Bilbao Forschungszentrum Jülich Helmholtz-Zentrum Geesthacht Huddersfield University **IFJ PAN. Krakow INFN**, Catania **INFN**, Legnaro **INFN**, Milan

Institute for Energy Research (IFE) Institut Laue-Langevin (ILL) Rutherford-Appleton Laboratory, Oxford(ISIS) **Copenhagen University** Laboratoire Léon Brilouin (LLB) Lodz University of Technology Lund Universitv Nuclear Physics Institute of the ASCR **Oslo Universitv** Paul Scherrer Institute **Roskilde University** Tallinn Technical University **Technical University of Chemnitz** Technical University of Denmark **Technical University Munich** Science and Technology Facilities Council University of Tartu Uppsala University **WIGNER Research Centre for Physics** Wroclaw Univesrity of technology Warsaw University of Technology **Zurich University of Applied Sciences** (ZHAW)

Site Photos

Site Photos

Site Photos

EUROPEAN SPALLATION SOURCE

10-1 May 201 https://europeanspallationsource.se/site-weekly-updates

ESS looking towards MAX IV and Lund University

Long-pulse performance

EUROPEAN SPALLATION SOURCE

> 2 m

EUROPEAN SPALLATION SOURCE

<u>Above target</u>: 3cm tall butterfly moderator assembly

<u>Below target</u>: space for future upgrade

_			
	Be reflector		
	Top 3 cm moderat	tor	
	premoderator		
proton beam	tungsten		

EUROPEAN SPALLATION SOURCE

<u>Above target</u>: 3cm tall butterfly moderator assembly

<u>Below target</u>: space for future upgrade

- Hydrogen for cold spectrum
- Water for thermal spectrum
- All beamports can view both

<u>Above target</u>: 3cm tall butterfly moderator assembly

<u>Below target</u>: space for future upgrade

- Hydrogen for cold spectrum
- Water for thermal spectrum
- All beamports can view both

EUROPEAN SPALLATION

SOURCE

<u>Above target</u>: 3cm tall butterfly moderator assembly

<u>Below target</u>: space for future upgrade

- Hydrogen for cold spectrum
- Water for thermal spectrum
- All beamports can view both

Adapting the pulse width

Upgradeability

Upgradeability

Upgradeability

scale

Length and Energy Scales

15 Instruments selected so far8 to be in user operation by 2024

Instrument Suite

Summary

- ESS will provide break-through performance in a wide variety of scientific fields
 - Superior source brightness
 - Superior flexibility
 - World-leading instrument designs
- Addresses a large and vibrant European user community
 - Discussions on-going with prospective partner countries: Canada, South Africa, Israel, ...
- Built by the European neutron labs in collaboration
- All of the 22 instruments will be available by peer-reviewed access
 - Ample scope for increasing that number
- First science expected in 2023
 - Followed by gradual ramp-up to full science capability
 - Supported by world-leading software, sample environment, ...

Thank you!

The Time-of-Flight (TOF) Method

Neutron Choppers

EUROPEAN SPALLATION SOURCE

Disk choppers

f < 300 Hz

 $\Delta t > 10 \mu s$

EUROPEAN SPALLATION SOURCE

Impact on bandwidth of pulse-shaping chopper

distance

EUROPEAN SPALLATION SOURCE

Impact on bandwidth of pulse-shaping chopper

Impact on bandwidth of pulse-shaping chopper

$$T/\tau = 25 \Longrightarrow L_2/L_1 = 25$$

Impact on bandwidth of pulse-shaping chopper

EUROPEAN

SPALLATION

SOURCE

Impact on bandwidth of pulse-shaping chopper

EUROPEAN

SPALLATION

SOURCE

Hall Layout

Hall Layout

Hall Layout

Beamport separation

Beamport separation

Beamport separation

ESS looking towards MAX IV and Lund University

61

Facility-based Survey on Neutron Users

- Small Angle Neutron Scattering
- Reflectometry
- Powder/Liquid Diffraction
- Single Crystal Diffraction
- Engineering Diffraction
- Imaging
- High-Resolution Spectroscopy
- Cold/Thermal Triple Axis Spectroscopy
- Cold/Thermal Time-of-Flight Spectroscopy
- Vibrational Spectroscopy
- Nuclear and Particle Physics

brightn**ess**

User Community based on publications

European Community 5000 - 6000 researchers 2000 publications per year

data: ESFRI, KFN

Facility-based Survey on Neutron Users

