

Status and Plans of the SPL study

R. Garoby - 3/05/2012

2nd Open Collaboration meeting on Superconducting Linacs for High Power Proton Beams (SLHiPP-2) May 3-4, 2012 Catania

- 1. Resources and organization
 - 2. Planning
 - 3. Recent progress
 - 4. Future...

Resources

- R & D for a High Power SPL formally supported at CERN in view of multiple future potential applications
- ⇒ ~1.7 MCHF and 6 FTEs / year
- Collaboration with ESS
- ⇒ Fellows and procurement of klystron modulator for SM18
- French in-kind contribution
- ⇒ Tuners, Helium tanks, use of Saclay 704 MHz high power test place...
- EC-supported programmes
 - EuCARD (WP10)
 - ⇒ Development and test of beta=1 (CEA) and beta=0.65 (IN2P3) 5 cells cavities
 - CRISP (WP4)
 - ⇒ Joint work with ESS and DESY
 - ⇒ EC-supported manpower for upgrading and exploiting the SM18 test place
 - LAGUNA-LBNO
 - ⇒ EC-supported fellow for studying proton drivers at CERN using LP- or HP-SPL
- DOE-supported programme
 - BNI
 - \Rightarrow Development and test of a β =1 cavity

Organization of the SPL R&D at CERN

Guideline

«Project-like» structure aimed at meeting the objectives of the HP-SPL R&D:

- Building and testing a prototype cryomodule with 4 cavities
- Updating CERN infrastructure and competence in superconducting RF technology
- Preparing submission of future subjects of R&D [design and construction of a full-size cryomodule, high power RF sources, HIPIMS (High Power Impulse Magnetron Sputtering)...]

Work Units

-Design, construction and test of the prototype cryomodule (Leader: V. Parma)

- Components: Cryomodule, Cavities, RF items (Couplers, tuners, ...), cryogenics equipment...
- Assembly (with adequate tools): cavities string in clean room, inclusion in cryomodule
- Tests: cavities in vertical cryostat, assembled cryomodule in bunker.
- **Upgrade of the SM18 infrastructure**

(Leader: O. Brunner)

- HP water rinsing system and upgraded clean roon
- Cryogenics for efficient operation at 2K
- High power RF at 704 MHz (klystron, modulator, high power distribution)
- Low Level RF and controls

-SC RF cavities technology

Fabrication and processing

Test, diagnostics and analysis

3/05/2012 (Catania) 4 SLHiPP-2

(Leader: E. Ciapala)

- 1. Resources and organization
- 2. Planning
 - 3. Recent progress
 - 4. Future...

Planning of SPL R&D

(1/2)

Modulator from industry (FSS)

Planning of SPL R&D

(2/2)

- 1. Resources and organization
- 2. Planning
- 3. Recent progress
 - 4. Future...

Status of SPL R&D

(1/2)

- Construction of 4 cavities in industry
 - ⇒ In progress (full delivery in 2012)
- Construction of one additional cavity at CERN
 - \Rightarrow In progress (2012)
- Test of single cell cavities from CEA and INFN
 - ⇒ In progress
- Measurements and tests with dumbbell copper cavity
 - ⇒ Done
- Upgrade of cryogenics and water rinsing facility in SM18
 - ⇒ Planned in 2012
- Upgrade of clean room in SM18
 - ⇒ Planned in 2012-2013
- 704 MHz klystron for SM18
 - ⇒ In fabrication (delivery in 2013)
- Klystron modulator from industry (ESS)
 - ⇒ In fabrication
- Preparation of 704 MHz RF components (Low Level and High Power) for SM18
 - ⇒ In progress

Status of SPL R&D

(2/2)

- Construction & test of High power RF couplers
 - ⇒ Successful high power RF tests in Saclay, limited by heating (problem with Cu-platting)
 - ⇒ Correctly Cu-platted tubes available / New assembly planned in DESY
 - ⇒ Review delayed to the end of 2012
- Specification & construction of tuners and He tanks (CEA)
 - ⇒ Delayed
- LP-SPL CDR (jointly with PS2)
 - ⇒ Delayed to 2012...
 - Future meetings
 - ⇒ No SLHiPP meeting at CERN in 2012
 - ⇒ 9-14 September 2012: LINAC' 12 Conference (Tel-Aviv)
 - ⇒ 5-9 November 2012: TTC meeting (JLab)
 - ⇒ 6-7 December 2012: "internal" meeting of contributors (CERN) (but external partners are welcome...)

More details during this meeting

Linac4 (1/2)

Linac4 (2/2)

Planning of connection to the PSB

				_												
ID	Task Name	M-1	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14
1	LHC ion run				<u> </u>											
2	PSB activities		-				-									
3	PSB cooling			<u> </u>	П											
4	PSB injection modifications				-		<u> </u>									
5	Linac4 activities		<u> </u>				Ψ̈́									
6	Linac2 shielding, BHZ20 conn.					$\overline{}$										
7	LBE,LBS modifications															
8	Transfer line commissioning															
9	Start-up						Ÿ				Ÿ					
10	PSB commissioning			П						<u> </u>						
11	PS/SPS start-up										<u> </u>					
12	LHC proton run													;	-	
13	LHC stop: 6 months															

Need 8 months / LHC stop of 6 months

Ready from 2015 (Linac4 must be already commissioned)

Likely starting date: at the end of 2016 («LS1.5») or 2018 (LS2)

HP-SPL cost estimate (1/2)

Cost estimate for the High Power SPL (HP-SPL)

F. Gerigk, CERN-BE-RF

Keywords: SPL, cost estimate

sLHC-Project-Note-0037

Abstract

This note gives a cost estimate for the construction of a 5 GeV, 4 MW High Power H⁻ Linac (SPL) on the CERN site.

1 Assumptions

This estimate is an extrapolation and update of a costing that was done in 2009 for the construction of a new LHC proton injector chain, consisting of a Low-Power SPL, PS2, and an upgrade of the SPS [1]. It is largely based on the basic parameters listed in Table 1 whose choice is detailed and motivated in [2].

Table 1: Parameters of the HP-SPL

Energy	5 GeV					
Beam power	4 MW					
Repetition rate	50 Hz					
Average pulse current	$40 \mathrm{mA} (20 \mathrm{mA})^*$					
Beam pulse length	$0.4 \text{ms} (0.8 \text{ms})^*$					
RF pulse length	$0.8 \text{ms} (1.6 \text{ms})^*$					
protons per pulse	$1 \cdot 1$	0^{14}				
Cavity bath temperature	2 K					
Cavity types	$\beta = 0.65$	$\beta = 1.0$				
Number of klystrons	66	200				
Cells per cavity	5	5				
Cavities per cryo-module	3	8				
Number of cavities	60	184				
Re-buncher cavities	0	4				
Spare cavities	6	12				
Accelerating gradient	19.3 MV/m	25 MV/m				
(R/Q)	275	566				
Q in 10 ⁹	6 (3)*	10 (5)*				
Peak power per cavity	0.5 MW	1 MW				

^{*} worst case assumption for cryogenics design

HP-SPL cost estimate (2/2)

sLHC-Project-Note-0037

Item	Material cost (MCHF)
Civil Engineering (Tunnels and surface buildings)	105
Cryogenics (Cooling plant, cryo-line etc.)	29
RF cavities (including 2 more PIMS cavities in Linac4)	123
RF power systems (including 50 Hz upgrade of Linac4)	424
Magnets (conventional including transfer line to synchrotron)	13
Vacuum equipments	14
Controls, Safety & access, Cooling & Ventilation, Beam Instrumentation	99
TOTAL	807

Subject of a special ESS-SPL meeting on May 30 at CERN

- 1. Resources and organization
- 2. Planning
- 3. Recent progress
- 4. Future...

Future (beyond what has been shown before)...

- 2012-2013:
- ⇒ contribution to the briefing book of the European Strategy Group [Chapter of a CERN document about accelerator R&D to be referenced by other documents (not necessarily from CERN) requiring the technology (neutrino facilities, EURISOL, LHeC, LEP-III…)]
- ⇒ Reactivation of studies for proton drivers in future neutrino facilities (in the context of LAGUNA-LBNO):
 - ⇒ LP-SPL as injector of a 2 MW / 30-50 GeV synchrotron
 - ⇒ HP-SPL with an accumulator as a 5 MW / 5 GeV proton source
- Branching point for defining the continuation of the R&D
- ⇒ Recommendations of the European Strategy Group at end 2012/beginning 2013
- ⇒ Updated Scientific Strategy of CERN: 2014?
- ⇒ Strong link with the ESS-SPL collaboration

Key ingredients for continuation:

- Physics! Based on the results of LHC and of the on-going ν experiments.
- Strength / weaknesses of competing options (Linear collider ...)
- Strength / weaknesses of the SPL-related applications (Proton drivers for v facilities, Injectors for LHC-related future beyond HL-LHC, LHeC, LEP-III ...)
- CERN strategy for sc RF technology
- Politics and collaborations...

THANK YOU FOR YOUR ATTENTION!