

352MHZ SOURCE AND PLANS FOR FULL POWER TESTING OF PROTOTYPE SPOKE CRYOMODULE

R.A. Yogi and FREIA Group, ESS-RF Group Unit leader for Spoke power & RF Distribution Uppsala University, Sweden.

Summary

- Introduction
- FREIA Hall at Uppsala
- Importance of selection of RF source
- Selection of Tetrode as driver for spoke cavities. Why?
- Selection of Solid state amplifier as predriver. Why?
- ❖ Selection of half height WR2300 for RF distribution. Why?
- System layout for full power testing of cryomodule.
- Schedule for testing.

European Spallation Source (ESS): world's most powerful neutron source

ESS linac will accelerate 50 mA beam of protons to 2.5 GeV

Specifications of superconducting 5 MW proton linac:

Pulse Length = 2.86 ms

Pulse Rate = 14 Hz

Beam Current = 50 mA

Energy = 2.5 GeV

Schematic of ESS linac

The baseline design for the RF system: Generation and distribution of the RF power from a single source to a single accelerating cavity[[]

The spokes section contains 36 superconducting spoke resonators at 352 MHz

Basic layout of an RF system.

Requirements of RF source

Maximum RF power for a spoke resonator = 245 kW

Considering LLRF overhead = 25% RF loss in distribution system = 5%, Power of RF source = 320 kW

Beam pulse width = 2.86 ms, repetition rate = 14 Hz, fill time of the cavity = $600 \mu s$ duty factor of the amplifier = 4.9%

spoke cavity band-width ≈ 2 kHz system band-width ≈ 100 times larger than spoke resonator band-width for tuning and regulation delay. 3 dB bandwidth > 200 kHz.

UNIVERSITET

EUROPEAN SPALLATION SOURCE

Specifications of Spoke RF amplifier:

Frequency = 352.21 MHz

Power = 350 kW

Band-width = 200 kHz.

Pulse width = 3.5 ms

Pulse repetition rate = 14 Hz

No RF source exist at **ESS** specifications!

RF Source?

Spoke Cryostat

Power coupler

High power testing?

FREIA

(Facility for Research Instrumentation and Acelerator Development) at Uppsala University

Features of FREIA

- **❖**1000 m² hall
- ❖Electrical input power = 1.2MW
- Cooling capacity = 800kW power
- Helium liquefier (>70 l/h) with LN2 pre-cooling
- Distribution box to users
- Impure gas recovery from users
- ❖RF amplifiers (two chains): 352 MHz, 350kW
- ❖RF Distribution system
- Test cryostat vertical and horizontal
- Test bunkers

Importance of selection of RF source

The capital and running cost of an accelerator is strongly affected by the RF power amplifiers:

Capital cost:

- cost of the amplifiers (including replacement tubes)
- ➤gain of the power amplifier: number of stages of amplifier, thus affecting gallery requirements
- > size and weight of the amplifiers determines the space required, thus influencing size and cost of gallery

Running cost

refliciency determines the electric power required and also amount of cooling needed

Typical power sources used at 352 MHz are tetrodes, klystrons, IOTs and solid state amplifiers

Criteria of comparison:

Power distribution scheme
Lifetime
Efficiency
Gain
Availability
Infrastructure size
Costs

Klystron:

- ➤ Too big for 350 kW power
- ➤ Size: 1 m x 1 m, weight: few tons
- ➤ Efficiency: 60 65%
- ➤ Modulator needed for power-supply,100 kV
- ➤ Gain: 37 dB
- ➤ Predriver not needed
- ➤ Life time: 40-50 khours
- ➤ Circulator needed for handling reflection

Solid state amplifier

RF pallet of 700W power

RF 5kW power module

- ➤ 70 modules of 5 kW each that are combined
- ➤ High reliability due to use of circulators and hybrid couplers.
- ➤ Size: very big 20 m²
- ➤ Efficiency: 65%
- ➤ Distributed power supply 50 V,
- >1000 A (low voltage, high current)
- ➤ Gain: 37 dB
- >Predriver not needed
- ➤ Life time: about 50 khours

IOTs

2KDW250PA Integral Cavity 267 MHz 300 kW CW, 73% n

SDI, Integral Cavity 425 MHz 500 kW pk., 70% n

- ➤2 IOTs of 200 kW each combined or single SDI IOT or 2KDW250PA to be modified
- ➤ High reliability due to use of circulators and hybrid couplers.
- ➤ Needs ceramic window
- ➤ Size: 1 m x 1 m, weight about 50 kg
- ➤ Efficiency: 65%
- ➤DC power supply 30 kV
- ➤Gain: 23 dB
- ➤ Predriver needed, 2 kW
- ➤ Life time: about 50 khours

Tetrodes

- Size of tetrode: $\phi = 17$ cm, H = 21 cm
- Foot area decided by size of output cavity size $< \phi = 1 \text{ m}$, H = 1 m
- ➤ efficiency: 60-75 %, dependant on class of operation
- ➤ Power supply: DC power supply 22 kV
- ➤ Doesn't impose stringent requirements on anode power supply, as output power is insensitive to anode ripple
- ➤ Life time: 20-25 khours
- ➤ Easy replacibility in 2-3 hours

- ➤ Gain: 12 20 dB, needs a pre-driver with output power 20kW.
- >can handle 100% reflection, a circulator is not needed

Thus Tetrode is the best choice at 352 MHz and 350 kW power.

Pre-amplifier (352 MHz, 20 kW)

➤ Can be either solid state amplifier or triode.

Solid state amplifier:

- ➤ Gain 73 dB, so only one stage
- ➤ Reliability: Modular system, so easy replacement possible.
- ➤ Efficiency: 70%

8 to 1 RF combiner 1 to 4 RF splitter RF IN RF OUT

Triode

- ➤ Low Gain 20 dB, so consists of three amplifier stages. It requires pre-predriver triode (1 kW), and solid state low power amplifier (100 W)
- ➤ Complex system. 3 amplifier stages, their power supplies, protections, hence low reliability.
- ➤ Efficiency: 70%

Comparison of amplifier system

No.	Parameter	Tetrode	Klystron	IOT	Solid state amplifier
1.	Cost of driver tube (keuros)	38	300	313 for one tube	1000
2.	Cost of required accessories (keuros)	150	20	20	820
3.	Cost of power supply (keuros)	135	600	200	Included in 2
4.	Cost of preamplifier (keuros)	125	_	13	-
5.	Capital cost of total system (keuros)	448	900	850	1820

Efficiency of spoke cavity section of ESS and operating cost

Peak power delivered by tetrode = Ppk = 350 kW

Pps = Ppk/0.7 = 500 kW (with 70% efficiency of the tetrode amplifier)

 $D = 14 Hz \times 3.5 ms = 4.9\%$

Average power delivered by power-supply = Pavg = 4.9% x 500 kW = 24.5 kW

RF power delivered to coupler in spoke section = Pcoupler = 4% x 245 kW = 9.8 kW (80% efficiency of coupler)

Power efficiency of spoke section = 40%

The total power consumption for the 36 spoke cavities is, Ptotal = $24.5 \text{ kW} \times 36 = 882 \text{ kW}$

Considering annual operation of 5200 hours Total power consumption for a year is 4.6 GWh

At an electricity price of roughly 0.086 EUR/kWh, Total operating cost of spoke cavity section for a year is 400 kEuros

TH 781

- ❖Installed in more than 15 institutes and companies.
- ❖ Tested at frequencies from 72 to 217 MHz with RF power up to 200 kW CW
- ❖ Tested upto 200 MHz, CW power few hundred kW, cavity 18781C.

How to proceed?

Design and development of output cavity

EUROPEAN SPALLATION SOURCE

Proposed layout for testing prototype cryomodule

A: Amplifer: Tetrode, Solid state

PS: Power supply

LLRF: Low level RF

Waveguide: Half height WR2300

DDC: Dual directional coupler

Load: Dummy load

Adet: Arc detectors, no circulator

- Power handling capability WR2300 (23 inch x 11.5 inch) is few tens MW.
- ➤ Power requirement for the spoke cavities is only 350 kW, so a half height WR2300 waveguide (23 inch x 5.75 inch) can be used.
- Reduction of waveguide size and cost is achieved. Handling will be much easier.
- Aluminum shall be the preferred material
- > As waveguides will be used in- door, uncoated waveguides can be used

Time-line to test spoke cryomodule

		2011				2012				2013				2014				2015				2016			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q
External Milestones		\vdash			-																				⊢
ESS-UU contract		-	sign																				$\overline{}$		-
TDR	first draft	-	- Crigiri				20/4																		-
	second draft							17/8																	-
	final document								15/10																-
Elliptical cavities	prototype 1-2										-			tbc											-
Spoke cavities	prototype 3	1												tbc											-
	prototype cryomodule	$\overline{}$																tbe	tbc						$\overline{}$
Developme	ent of 352 MHz RF Power Am	nlifier fo	r Snok	o Posso	natore																				
Developme	ent of 352 MHZ RF Power Am	Dillier ic	горок	e Reso	nators																_				_
		-	_																		_	-	\vdash		⊢
Dayuer course (prote)																									
Power source (proto)	development and test	-	_	_		///									///	,,,,	,,,,	,,,,	777				-		-
Power source (proto) RF system test	with cavities							-																	F
																	////								
RF system test	with cavities	romodu																							
RF system test		omodu	0													////	////	////	////						
RF system test RF System	with cavities Test of Prototype Spoke Cr	omodu	•																						
RF system test RF System Power source (2nd)	n Test of Prototype Spoke Crydevelopment and test	omodu	e											///							,,,,				
RF system test RF System	with cavities Test of Prototype Spoke Cr	yomodu	le .																		,,,,	///	///		
RF system test RF System Power source (2nd) RF system test	Test of Prototype Spoke Cr development and test with cavities		e																	///	///	///	///		
RF system test RF System Power source (2nd) RF system test	n Test of Prototype Spoke Crydevelopment and test		le l																		///	///	///		
RF system test RF System Power source (2nd) RF system test	Test of Prototype Spoke Cr development and test with cavities		le l																	///	///	///	<i>,,,</i>		
RF system test RF System Power source (2nd) RF system test Acceptance	m Test of Prototype Spoke Crydevelopment and test with cavities		6																	///	///	"	///		
RF system test RF System Power source (2nd) RF system test Acceptance	m Test of Prototype Spoke Crydevelopment and test with cavities		e																	///	///	"	///		
RF system test RF System Power source (2nd) RF system test Acceptance FREIA Test Facility -	Test of Prototype Spoke Crydevelopment and test with cavities Testing of Spoke Cryomod Construction		0																		////	///	///		
RF system test RF System Power source (2nd) RF system test Acceptance	Test of Prototype Spoke Crydevelopment and test with cavities Testing of Spoke Cryomod Construction planning and construction		le le																		///	777	<i>///</i>		
RF system test RF System Power source (2nd) RF system test Acceptanc FREIA Test Facility -	Test of Prototype Spoke Crydevelopment and test with cavities Testing of Spoke Cryomod Construction		6																			///			

Comments and suggestions are welcome !

Thank you!

Supporting slides

Comparison between coaxial line and waveguide

No.	Parameter	Coaxial line	Waveguide
1.	Standard	6 1/8 inch	WR2300
2.	Outside	6 inch	23inch x 11.5
	dimension		inch
3.	Material	Inner conductor : Copper	Aluminum
		Outer conductor : Aluminum	
		Dielectric : Teflon / ceramic	
		Inner conductor joint: Be Cu	
4.	Loss in dB/m	> 0.0035	< 0.002
6.	Installation	Difficult	Easy
7.	Cost	3100 euro/m + cost of ceramic	1900 euro/m
		+ cost of inner conductor joint	