

Neutron Science and Instruments @ ESS Research Centre Jülich (FZJ)

Andreas Wischnewski || 22nd January 2014

ESS: An Opportunity for German Organisations and Companies – BMU, Bonn, Germany

Science Campus Jülich

Staff: 5236 (reference date: 31.12.2012)

thereof:

Scientists: 1658

(incl. 469 PhD – Students)

Technical staff: 1662

Revenue: 557 Mio. €

incl. 172 Mio. € third party funding

Science Campus Jülich

Staff: 5236 (reference date: 31.12.2012)

thereof:

Scientists: 1658

(incl. 469 PhD – Students)

Technical staff: 1662

Revenue: 557 Mio. €

incl. 172 Mio. € third party funding

... long tradition in Neutron Science, Neutron Sources, Instrumentation, Instrument Components ...

Research for generic key technologies of the next generation

${\bf Design-Construction-Operation}$

of First Class Instruments

and Instrument Components

13 instruments

contr. to 4+1 instruments

MLZ, Garching – ILL, Grenoble – SNS, Oak Ridge

JCNS Outstation @ SNS

JCNS Outstation: 7 persons (scientists, engineers, postdocs) overbooking factor ≈ 2

10% POWGEN (powder diffractometer) 10% BASIS (backscattering spectrometer) 25% NSE

first echo: end 2009

collaboration with companies: (sc) coils, magnetic shielding, sample environment, (detectors, neutron guides, chopper)

First time operation of NSE at a spallation source

German ESS Design Update Project

Contributions to all major parts of the ESS

ESS: FZ Jülich Activities

- FZ Jülich coordinates German ESS activities
- Prof. Schmidt is the coordinator for the overall German project and member of the ESS STC
- Jülich scientists are member of the "Advisory Committees"
- ESS competence centre established mid 2011
- FZ Jülich competence is based on a long history of interdisciplinary and inter-institutional collaboration

JCNS
Instruments,
Critical
components

ZEA-1

Target,
Critical
components

Critical
components

ZEA-1: Central Institute for Technology ZEA-2: Central Institute for Electronics

German ESS Design Update Project

German Design Update Project

- General approach ("bottom-up")
- Evaluation of user demands, requests, feedback
- Close contact to KFN
- Large number of user workshops on the "instrument level"
- Workshop Bad Reichenhall
 - Organized by KFN, ESS AB, FZ Jülich
 - 150 participants
 - Scientists & Instrument experts
 - Outcome documented in a report

Science Vision for the European Spallation Source

- German Perspectives -

German ESS Design Update Project October, 2010 – December, 2014

Instrument Design, Evaluation of Science Case and User Requests

Submission of 7 Instrument Proposals September, 2013

Review Process in 2014 STAP, SAC, STC

FZJ:5

HZG: 1

TUM: 1

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

Bi-spectral powder diffractometer: POWHOW

High-Resolution Spin Echo Spectrometer

High Intensity SANS with optional focusing optics

SKADI: Small K Advanced Diffractometer

Instrument Proposals submitted September, 2013

The most urgent common request from both communities:

- increase the sensitivity to thin layers, interfacial regimes in the sub nm region
- ➤ high intensity (relaxed Q resolution)
- ➤ high dynamic Q range (low background)
- implemented GISANS option (lateral structures in the nm range)
- Low resolution reflectometer with high Q range and high dynamical range (≥8 orders)

Optimised modes of the instrument:

- Un-/ Polarised specular reflectivity (thin interfaces areas)
- Un- / Polarised off-specular scattering / GISANS mode (lateral structures)

Add on's (NOT COMPROMISING main modes)

- High wavelength resolution 1% and 3%
- Small samples with 1 x 1mm²

Stefan Mattauch (FZJ)
Alexander Ioffe (FZJ)
Jean-Francois Moulin (HZG)
Dieter Lott (LLB)
H. Wacklin (ESS coordinator)

FZJ Instrument Proposal 2013

$^{3D}_{\mathfrak{D}}$ assembly of $Fe_{50}Pt_{50}$ particles

of the SLD profile

Examples: Understanding and controlling interfacial structures and interactions in the 1-10 nm regime

Properties at interfaces between oxide materials:

- Superconductivity between insulating materials
- Magnetism between non-magnetic layers
- Ferromagnetism between anti-ferromagnetic layers

Pattern Formation in the Nanoworld:

- Due to competition between exchange interactions, dipolar interactions and anisotropies
- Non-collinear magnetism at the surface
- Influence of the substrate
- Dynamics (spin waves)
 - Biology of membranes and associated proteins
 - Hybrid materials
 - Materials in confined geometry

Science Case

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

Bi-spectral powder diffractometer: POWHOW

High-Resolution Spin Echo Spectrometer

High Intensity SANS with optional focusing optics

SKADI: Small K Advanced Diffractometer

Instrument Proposals submitted September, 2013

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

- ➤ Multispectral spectrometer for magnetism + material science
 - From extreme energy resolution to very high flux
 - ➤ 4 decades in energy/time on **one** instrument
- Polarization analysis
- ➤ Taking full advantage of Repitition Rate Multiplication (RRM)
- > Pixel power
 - > Adaptive collimation
 - $ightharpoonup \Delta Q \ge 0.01 \text{ Å}^{-1}$ for small angle region
 - $ightharpoonup Q \le 12 \text{ Å}^{-1}$
 - > Mapping of coherent excitations

Jörg Voigt (FZJ) Nicolo Violini (FZJ) Thomas Brückel (FZJ) P. Deen (ESS coordinator)

FZJ Instrument Proposal 2013

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

High T_C Superconductivity

Multiferroics

Molecular magnets

Quantum phase transitions

- Energy research
 - Diffusive motion, acoustic and optical branches at once
 - Thermo-electrics
 - Ion transport

Dynamics in polymers and biomaterials

- Proteins, hydration water
- Bio-catalysts, bio-sensors
- Polymers, Glasses

Science Case

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

Bi-spectral powder diffractometer: POWHOW

High-Resolution Spin Echo Spectrometer

High Intensity SANS with optional focusing optics

SKADI: Small K Advanced Diffractometer

Instrument Proposals submitted September, 2013

Bi-spectral powder diffractometer: POWHOW

High flexibility in trading resolution versus intensity High resolution in backscattering $\Delta d \approx 10^{-4}~(\propto 1/\lambda)$ High intensity single shot: approx. a few ms resolution

W. Schweika (FZJ)

N. Violini (FZJ)

K. Lieutenant (HZB)

A. Houben (RWTH Aachen)

P. Henry (ESS coordinator)

Bi-spectral powder diffractometer: POWHOW

- > magnetism
- **>** low T physics, multiferroics
- > multiple phases and length scales
- > large unit cells
- > ...
- Magnetic nano-particles: atomic and magnetic structure spatial magnetization distribution

high resolution @ HRPD (ISIS) observation of magnetic phase transition associated with lattice distortions

Noriki Terada et al., EPJ Web of Conferences 40, 15008 (2013)

Neutron powder diffraction on commercial Li-ion battery (LiCoO₂ based, 18650 type) "in operando"

A. Senyshyn, W. Schmahl (LMU Munich)

Science Case

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

Bi-spectral powder diffractometer: POWHOW

High-Resolution Spin Echo Spectrometer

High Intensity SANS with optional focusing optics

SKADI: Small K Advanced Diffractometer

Instrument Proposals submitted September, 2013

High-Resolution Spin Echo Spectrometer

M. Monkenbusch (FZJ)

S. Pasini (FZJ)

M. Sharp (ESS coordinator)

FZJ Instrument Proposal 2013

High-Resolution Spin Echo Spectrometer

Dense polymeric systems

- polymer rings, star polymers
- self-healing materials
- polymers in confinement, e.g. pores

Proteins and biomolecules

- Functional domain motions
- Emerging topic: nanodiscs

Glass physics

Complex fluids and diffusion in crowded (protein) soluti Challenge: diffusion in cell/ionic liquids

Research in energy materials

Electrolytes and storage materials

Krutyeva et al., PRL 110, 108303 (2013)

Science Case

Time-of-flight Reciprocal space Explorer

TREX: A bispectral chopper spectrometer for magnetism and material science

Bi-spectral powder diffractometer: POWHOW

High-Resolution Spin Echo Spectrometer

High Intensity SANS with optional focusing optics

SKADI: Small K Advanced Diffractometer

Instrument Proposals submitted September, 2013

High Intensity SANS with optional focusing optics SKADI: Small K Advanced Diffractometer

- Highest possible intensities
- Polarization
- Wide Q-range $10^{-3}\text{Å}^{-1} 2\text{ Å}^{-1}$
- Extended Q-range to few 10⁻⁵ Å⁻¹
 (VSANS) and 10⁻⁶Å⁻¹ (SESANS)
- Large customized sample environment

FZJ Instrument Proposal 2013

High Intensity SANS with optional focusing optics SKADI: Small K Advanced Diffractometer

Nanofoams

- Fast Kinetics
- Crowded Systems (Multiple length scales)
- Magnetic Systems
- Detect smallest amounts of additives

E. coli (Goodsell)

Science Case

Critical instrument components

Design of a compact on-beam SEOP analyzer for SANS

- Allows standard sample environment
- Online polarization

Polarization Analysis studies

- Large solid-angle ³He spin-filter cell
- Separation of coherent, incoherent and magnetic scattering

Novel components for novel instrumentation

Choppers & Detectors for the ESS

- Disk choppers with beamline specific housings and disk designs
- Customized absorber coatings
- Fermi choppers with rotor weights up to 50 kg
- Chopper control electronics

Grid of WLSF

- Detectors with wavelength-shiftingfibre light readout
- Large area, low γ-sensitivity, position resolution, detection efficiency
- Detectors based on Anger camera principle
- Large area, light detection devices, low γ-sensitivity, position reconstruction, count rate capability

JCNS – ZEA-1 – ZEA-2 collaboration

