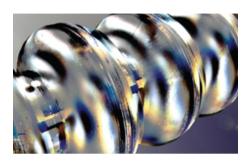


SRF Technology at DESY Activities and technologies relevant for ESS

January 22nd, 2014 Hans Weise / DESY



Knowledge Exchange between DESY and ESS

Based on the experience with the European XFEL and the long time history of Superconducting RF Technology (TESLA, FLASH, TTC, ILC R&D) DESY is clearly able to provide expertise to the ESS Accelerator Team.

- Support and knowledge exchange within the SRF community is well established.
- The ACCSYS construction phase of ESS will start after the European XFEL accelerator is built.
- As contribution to the ESS Design Update Phase, DESY already started to provide assistance in the field of accelerator technology.
 Accelerator Module Design / Test Facility Study / Project Organization
- A continuation of the good collaboration established within the SRF community and used for the European XFEL would be appreciated by all partners (research institutes & industry).

Recent Activities

- Technical advice in different fields has been given over the last year
 - SRF cavities
 - Cavity testing
 - Cryogenics (cryoplant / transfer lines)
 - Beam diagnostics
 - LLRF based on MTCA technology
- Several meetings / visits were used to exchange knowledge between DESY's XFEL Project Group and the ESS project management
 - participation in technical reviews (incl. specs. & CFT evaluation)
 - discussions with emphasis on project structure for the accelerator systems, In-kind contributions, project partners, common tools etc.
- DESY provided help in the cryogenic design, provided specifications and studied the possible use of existing DESY / XFEL infrastructure perhaps available after the installation of the European XFEL.

SRF Technology at DESY – Activities and Technologies Relevant for ESS SRF Technology Industrialized for the European XFEL at DESY

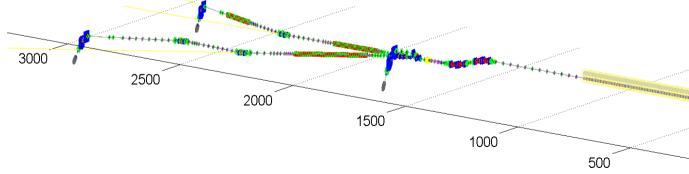

SRF Technology at DESY – Activities and Technologies Relevant for ESS

European XFEL

An Accelerator Complex for 17.5 GeV

100 accelerator modules

800 accelerating cavities 1.3 GHz / 23.6 MV/m



25 RF stations provide 5.2 MW each

The European XFEL

XFEL site ±50 m

Built by Research Institutes from 12 European Nations

Iserbrook

Some specifications

- Photon energy 0.3-24 keV
- Pulse duration ~ 10-100 fs
- Pulse energy few mJ
- Superconducting linac. 17.5 GeV
- 10 Hz (27 000 b/s)
- 5 beamlines / 10 instruments
 - Start version with 3 beamlines and 6 instruments
- Several extensions possible:
 - More undulators
 - More instruments
 -
 - Variable polarization
 - Self-Seeding
 - CW operation

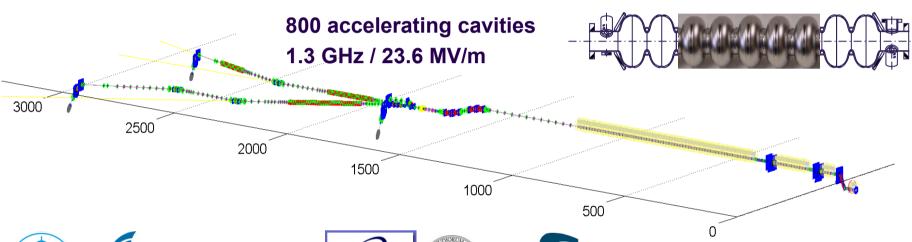
SASE2 (= SASE1)

17.5 GeV SASE1, λ_u = 40 mm

0.2 - 0.05 nm SASE3, λ_u = 68 mm

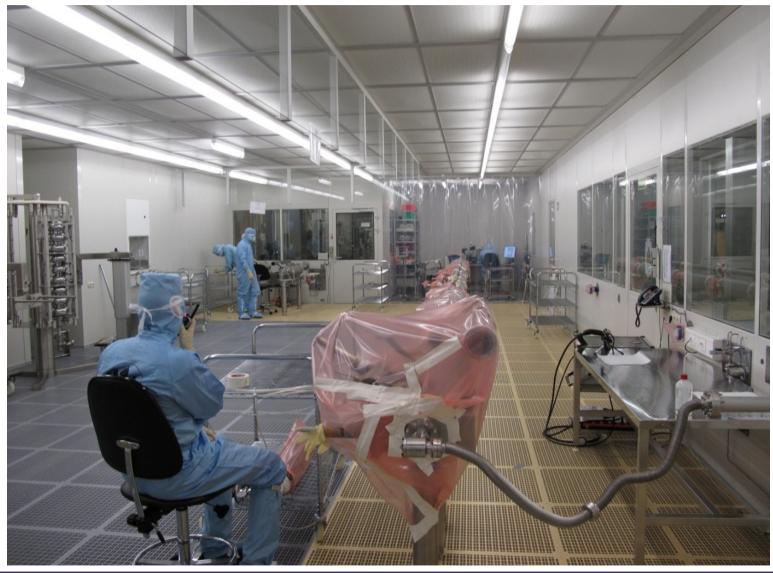
1.7 - 0.4 nm

First electron beam 2nd half of 2016



Contributors to the XFEL Accelerator

100 accelerator modules



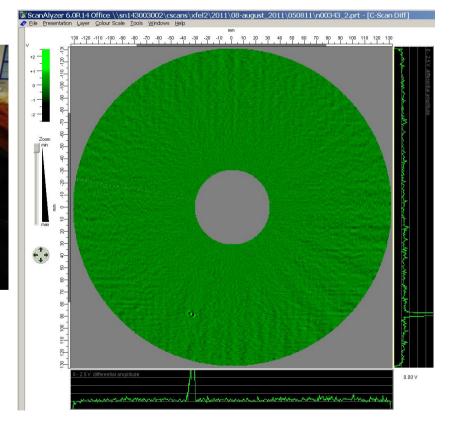
SRF Technology at DESY – Activities and Technologies Relevant for ESS Established DESY Technology (developed during the last two decades)

SRF Technology at DESY – Activities and Technologies Relevant for ESS

Industrial Cavity Production Relies on DESY Supervision

- Special CE certified machines were developed and given to industry.
- Since accelerator cavities are delivered without performance guarantee, very detailed specifications are used.
- Many productions steps are supported and partly supervised by DESY.
- Several QC steps are established. Very detailed documentation.

Niobium Material Bought and QC-ed by DESY

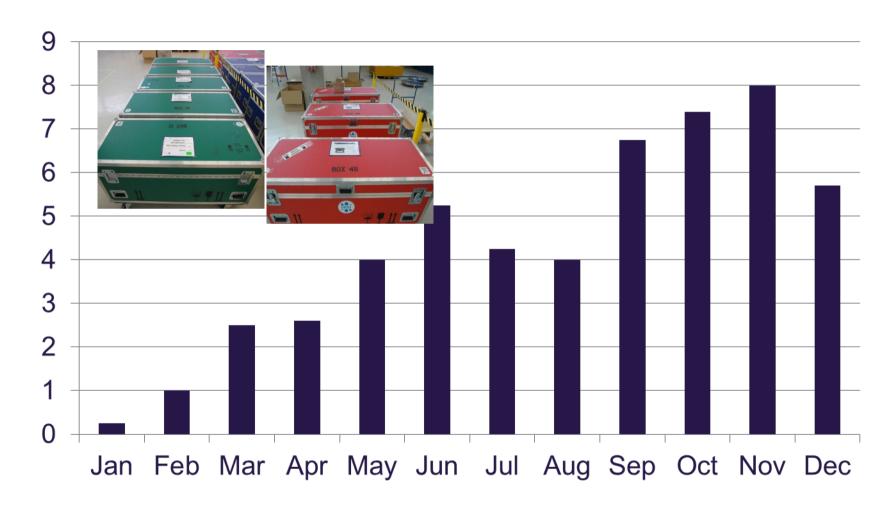


All Nb / NbTi material (24,420 single parts!) were procured by DESY.

Detailed quality inspection was developed and carried out.

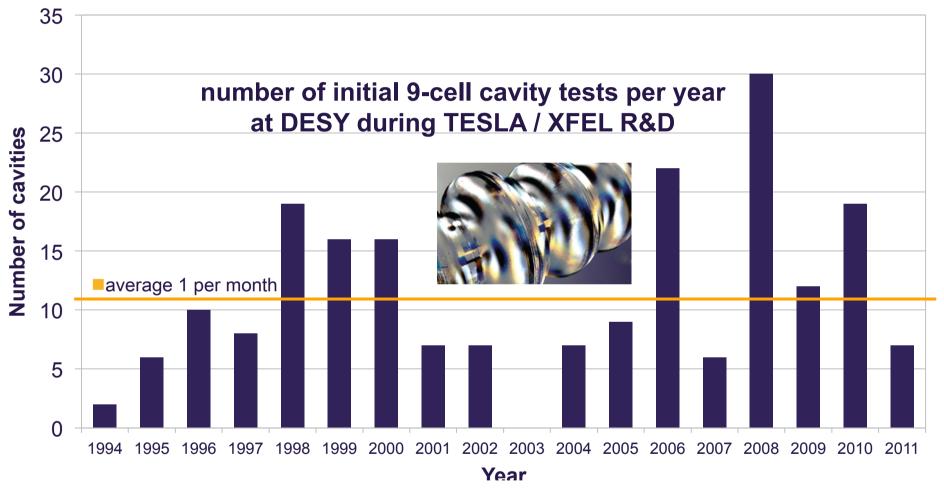
Last Delivery end of 2013. All material available to cavity

vendors.


800 XFEL Cavities Travel Through Europe

DESY

Weekly Cavity Delivery for Euroepan XFEL



■ Task for 2014: continuous delivery of 8 cavities per week

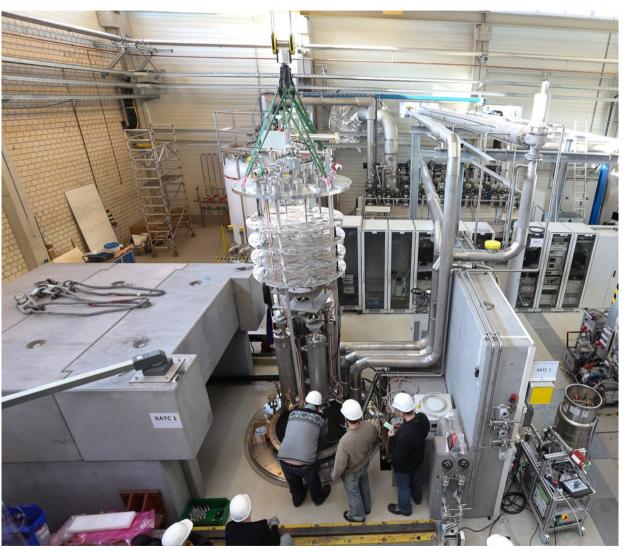
New Cavities per Year

- during TESLA / XFEL R&D phase we worked on up to 30 cavities per year
- the European XFEL requires approx. 400 cavities per year

Cavity Delivery

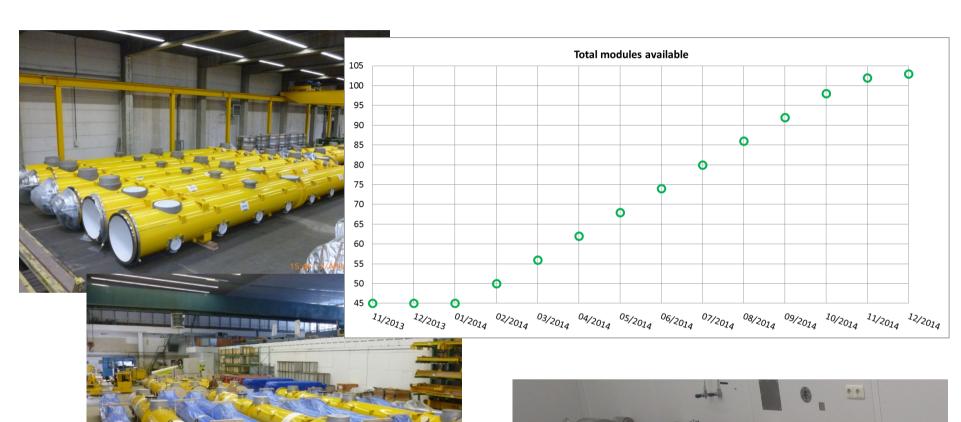
1	Cavity tracing															
2	week 2															
3	year															
4	month ember			Oktober					November				December			
5	calendar week	week 38	week 39	week 40	week 41	week 42	week 43	week 44	week 45	week 46	week 47	week 48	week 49	week 50	week 51	week 52
7	EZ CVS Nr./ date	588 / 19.09.	591 / 26.09.	592 / 2.10.	613 / 9.10.	606 / 16.10.	506 / 24.10.	617 / 31.10.	621 / 07.11.	605 / 14.11.	627 / 21.11.	603 / 28.11.	636 / 05.12.	640 / 12.12.	643 / 19.12.	
8		589 / 19.09.	610 / 26.09.	587 / 2.10.	614 / 9.10.	590 / 16.10.	594 / 23.10.	618 / 31.10.	597 / 07.11.	623 / 14.11.	624 / 21.11.	632 / 28.11.	598 / 05.12.	641 / 12.12.	648 / 19.12.	
9			612 / 26.09.	593 / 2.10.	582 / 9.10.	586 / 16.10.	596 / 24.10.	619 / 31.10.	609 / 07.11.	625 / 14.11.	604 / 21.11.	631 / 28.11.	637 / 05.12.	645 / 12.12.	649 / 19.12.	
10						607 / 16.10.	611 / 24.10.	620 / 31.10.		626 / 14.11.	622 / 21.11.	634 / 28.11.		646 / 12.12.		
11							615 / 24.10.			500 / 14.11.			506 / 05.12.			
12							616 / 24.10.						658 / 05.12.			
14	RI CVS Nr./ date	053 / 20.09	010 / 27.09		067 / 07.10	074 / 18.10	084 / 25.10		088 / 08.11.	093 / 15.11.	049 / 19.11.	033 / 26.11.	096 / 03.12.		107 / 20.12.	
15		060 / 20.09	049 / 27.09		069 / 07.10	080 / 18.10	085 / 25.10		089 / 08.11.	097 / 15.11.	065 / 19.11.	062 / 26.11.			110 / 20.12.	
16		063 / 20.09	059 / 27.09		071 / 07.10	081 / 18.10	086 / 25.10		092 / 08.11.	099 / 15.11.	066 / 19.11.	068 / 26.11.			112 / 20.12.	
17		064 / 20.09	062 / 27.09		028 / 07.10	082 / 18.10	090 / 25.10		095 / 08.11.	100 / 15.11.	079 / 22.11.	073 / 26.11.			113 / 20.12.	
18		065 / 20.09	066 / 27.09		018 / 07.10	083 / 18.10	087 / 25.10		096 / 08.11.	101 / 15.11.					114 / 20.12.	
19			068 / 27.09		072 / 11.10						103 / 22.11.				116 / 20.12.	
20			070 / 27.09		073 / 11.10						104 / 22.11.					
21					075 / 11.10						105 / 22.11.					
22					078 / 11.10							106 / 29.11.				
23					079 / 11.10											
25	weekly delivering to DESY	7	9	3	11	9	10	4	8	9	8	7	4	4	9	0
27	total delivered from EZ	71	74	77	80	84	89	93	96	100	104	108	112	116	119	119
28	total delivered from RI	47	53	53	61	66	71	71	76	81	85	88	88	88	94	94
30	total delivered to DESY	118	127	130	141	150	160	164	172	181	189	196	200	204	213	213
32	weekly RF testing at DESY	7	5	2	4	4	10	3	7	12	6	10	6	13	7	
33	total RF tested at DESY	89	94	96	100	104	114	117	124	136	142	152	158	171	178	178
35	delivery to IRFU	-1	7		5	-1	5		4	-2	7		7		7	-12
36	total delivery to IRFU	43	50	50	55	54	59	59	63	61	68	68	75	75	82	70

- average delivery of 8 cavities per week reached
- in total 213 delivered cavities until end of 2013
 - still some non-conformities, i.e. some rejected cavities (<10%)</p>
 - 30+ new cavities still to be tested
 - test of re-treated cavities adds to the weekly work load
 - re-treatment (mostly only HPR) successful and done for all cavities showing some gradient potential, i.e. even if European XFEL specs. are met
- approx. 70 cavities delivered to CEA Saclay; average usable gradient almost 30 MV/m

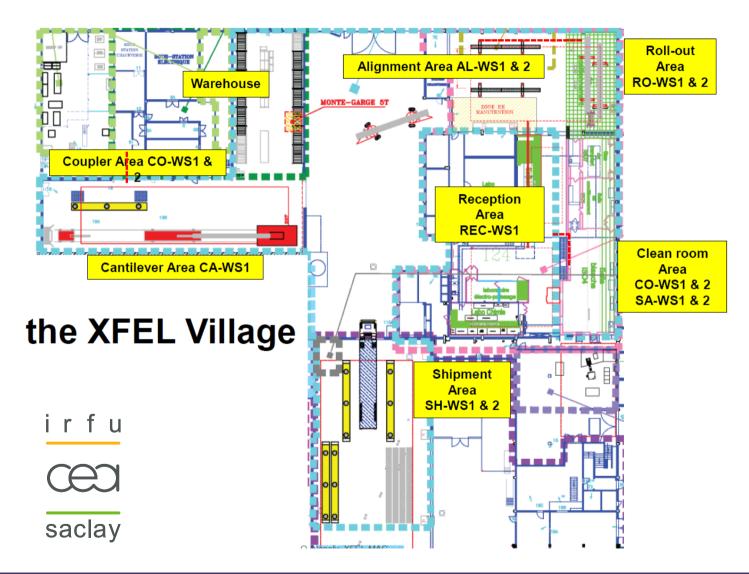


Vertical Test of Accelerating Cavities at DESY

- all RF test related procedures developed
- two vertical dewars are used to test up to 12 cavities per week
- documentation required to trace all parts used for the s.c. linac

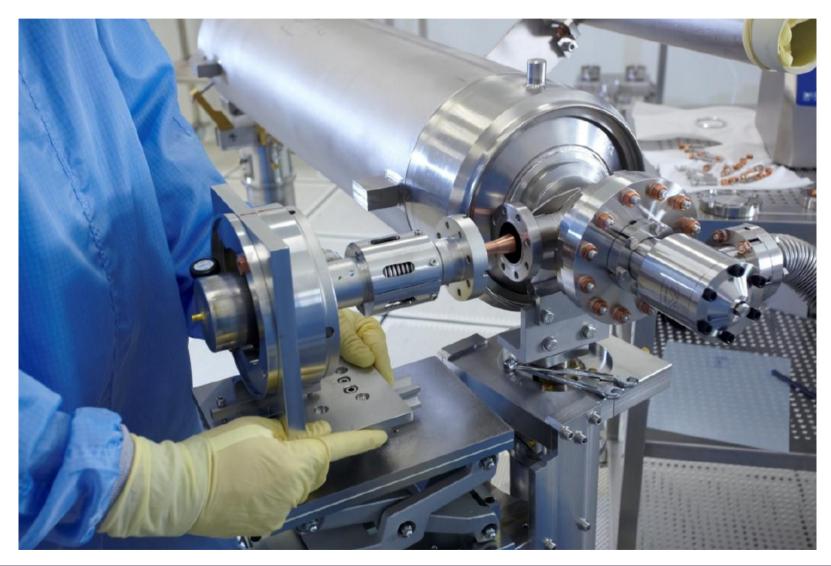


SRF Technology at DESY - Activities and Technologies Relevant for ESS 103 Cryostats and Cold Masses Needed also s.c. Magnets and Diagnostics



SRF Technology at DESY – Activities and Technologies Relevant for ESS XFEL Village at IRFU / CEA Saclay used for **Accelerator Module Assembly**

saclay



Mounting of RO Power Coupler Cold Part

Cavity String Assembly at IRFU / Saclay

DESY

Accelerator Module Testing at DESY

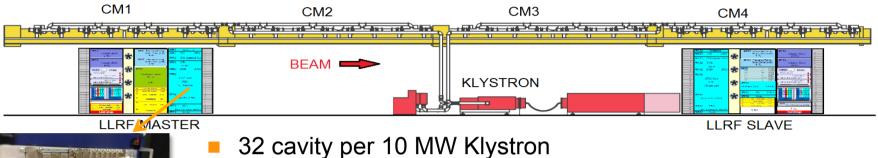
SRF Technology at DESY – Activities and Technologies Relevant for ESS **Tested Accelerator Modules are Prepared for** the Tunnel Installation

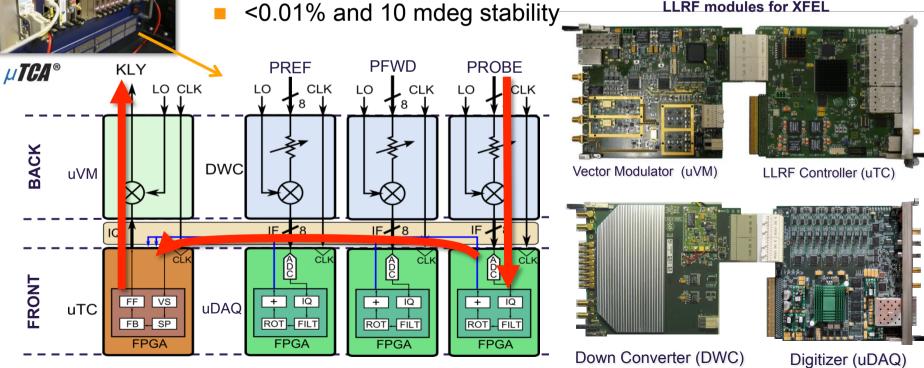
Modern front-end controls based on MicroTCA

DESY

- High availability
- Configurable
- Modular incl. AMC/RTM

- Excellent analog performance
- High data throughputs
- **■**Hot swap

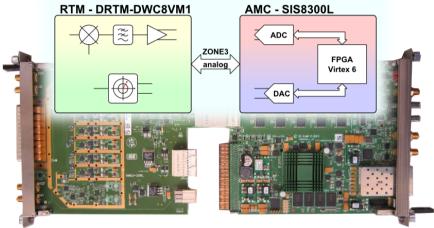

Application modules Common modules **ADC** Machine **Protection** Digi. 10 • LLRF **MCH CPU Timing System** Diagnostics -rom central timing ... Cpl. Interlocks Laser BPMs SIS8300 ... Toroids Backplane Etherne MTCA.4



LLRF modules for XFEL

Low Level RF controls for 800 SRF cavities

- 3000 RF signal to be processed

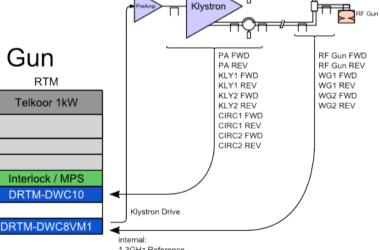


HZDR


... and for single cavities operation...

cost and performance optimized ...

Frequency range 700MHz - 6 GHz


Frequency range 10MHz - 500 MHz

XFEL RF Gun LLRF System

2HE 6 Slot MTCA Crate (Schroff)

■ .. with up to 8 cavity regulation in one 12 slot MTCA decrate

#-1

#2

#3

PITZ RF Gun

RTM

Telkoor 1kW

AMC

NAT MCH

CPU + HDD/SSD

x1timer

DAMC02

SIS8300L

SIS8300L

SRF Technology at DESY – Activities and Technologies Relevant for ESS

Possible DESY Involvement in ESS Accelerator Construction

- The ESS Accelerator Team has recently delivered a Wish List to DESY which describes possible cooperation in the fields
 - Niobium and cavity procurement (elliptical cavities)
 - Cavity testing
 - Advice for module testing to be carried out at Lund
 - Participation in commissioning of cryogenic systems
 - Low-Level RF control for accelerator systems
 - Beam diagnostics
- The ACCSYS construction phase of ESS will start after the European XFEL accelerator is built. Thus the ESS schedule matches with the XFEL schedule.
- Based on ESS funding, work on several of the above listed tasks could be started and DESY knowledge be made available to ESS and its industrial partners.

The end