Neutron Beam EDM Experiment

Florian Piegsa

University of Bern Albert Einstein Center for Fundamental Physics

PHYSICAL REVIEW C 88, 045502 (2013)

New concept for a neutron electric dipole moment search using a pulsed beam

Florian M. Piegsa* ETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland (Received 27 May 2013; published 14 October 2013)

A concept to search for a neutron electric dipole moment (nEDM) is presented, which employs a pulsed neutron beam instead of the established use of storable ultracold neutrons (UCN). The technique takes advantage of the high peak flux and the time structure of a next-generation pulsed spallation source like the planned European Spallation Source. It is demonstrated that the sensitivity for a nEDM can be improved by several orders of magnitude compared to the best beam experiments performed in the 1970s and can compete with the sensitivity of UCN experiments.

PHYSICAL REVIEW C 98, 045503 (2018)

Novel concept for a neutron electric charge measurement using a Talbot-Lau interferometer at a pulsed source

Florian M. Piegsa*

Laboratory for High Energy Physics and Albert Einstein Center for Fundamental Physics, University of Bern, CH-3012 Bern, Switzerland

(Received 23 July 2018; published 30 October 2018)

A concept to measure the neutron electric charge is presented which employs a precision Talbot-Lau interferometer in a high-intensity pulsed neutron beam. It is demonstrated that the sensitivity for a neutron charge measurement can be improved by up to two orders of magnitude compared to the current best direct experimental limit.

ANNI – Cold Neutron Beam Facility for Particle Physics (ESS)

Science cases:

- Neutron decay (PERC, Perkeo, aSPECT, BRAND)
- Hadronic weak interaction
- Neutron Beam EDM
- Neutron charge measurement
- nnbar-studies etc.

E. Klinkby, T. Soldner, J. Phys. Conf. Ser. 746, 012051 (2016)

T. Soldner et al., EPJ Web Conf. 219, 10003 (2019)

Neutron EDM – Motivation

Matter-antimatter asymmetry in our universe

Sakharov criteria for baryogenesis*

CP violation of electric dipole moments

^{*} Sakharov, JETP Lett. 5, 24 (1967)

Neutron EDM – Situation and Perspective

Dress et al., PRD 15, 9 (1977) Abel et al., PRL 124, 081803 (2020)

Neutron Beam EDM Experiment (1977)

BEAM EDM CONCEPT

Why were Beam EDM Experiments abandoned?

v×E – effect:
$$\vec{B}_{v \times E} = -\frac{\vec{v} \times \vec{E}}{c^2}$$

► This can cause a false EDM signal:

$$d_{\mathrm{false}} pprox \mathbf{10^{-20}} \ \mathrm{e} \ \mathrm{cm} \cdot \sin lpha \quad ext{ for: } v = \mathbf{100} \ \mathrm{m/s}$$

► The false effect is velocity-dependent, however, a real EDM signal is not!

Novel Neutron Beam EDM Concept

- Concept is ideal for pulsed neutron spallation sources e.g. at the European Spallation Source (ESS)
- Start with proof-of-principle experiments at Paul Scherrer Institute and Institute Laue-Langevin

Piegsa, PRC 88, 045502 (2013)

Neutron EDM Statistical Sensitivity

$$\sigma(d_n) \propto \frac{1}{ET\sqrt{N}}$$

BEAM

E = 100 kV/cm

 $N \approx 100 \text{ MHz} \text{ (ESS)}$

 $T \approx 100 \text{ ms}$ (50 m)

UCN*

E = 10 kV/cm

 $N = 14'000 / 300 s \approx 50 Hz$

T = 130 s (storage)

*Baker et al., PRL 97, 131801 (2006)

Neutron Beam EDM Experiment

CROSS SECTION

Optimization ongoing ... wavelength-band, skip pulses etc.

Particle Brightness at PF1b (ILL)

$$B_P = \int_{0.3}^{0.7} \frac{\lambda_0}{\lambda} \frac{\partial B_C}{\partial \lambda} d\lambda$$
 $B_P \approx 1.3 \times 10^{13} \text{ cm}^{-2} \text{s}^{-1} \text{sterad}^{-1}$

with: $\lambda_0 = 0.18 \text{ nm}$

Abele et al., NIM A 562, 407 (2006)

Statistical Sensitivity at ESS

$$\sigma_{\mathrm{Beam}}(d_{\mathrm{n}}) pprox rac{2\hbar}{\eta au E \sqrt{N}}$$

$$\eta = 0.75$$
, $L = 50$ m, $L_{TOF} = 75$ m, $\tau = 50$ ms, $E = 100$ kV/cm

Cross section of two beams

$$N = 1.3 \times 10^{13} \, \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \times 1/3 \times 1 \times (2 \times 20 \, \text{cm}^2) \times 2 \times 10^{-7} \text{sr} \sim 40 \, \text{MHz}$$

PF1B particle brightness ESS \approx ILL 20 cm²/ (100 m)² (ILL)

$$\sigma(d_{
m n}) pprox 5 imes 10^{-26} \, {
m e} \, {
m cm} \, \, {
m per} \, {
m day}$$

Guiding electrodes flux gain ~ 10

E. Chanel et al., EPJ Web Conf. 219, 02004 (2019)

Beam Time at BOA / PSI (Sept./Oct. 2018)

Two Layer Magnetic Shield and RF Shield (2020)

Passive shielding of external field inhomogeneities and fluctuations

Beam Time at PF1b / ILL (2020)

Beam Time at PF1b / ILL (2020)

- Two beams each: 1 × 7 cm²
- ► Chopper: f_{ch} = 19 Hz, duty cycle = 2%, L_{TOF} = 10.4 m
- Main magnetic field: B_0 = 220 μT
- Three one-meter-long HV-electrode sections
- 8 internal (stab.) and 5 external (monitor) fluxgates

Spin Analyser and Detector

Two beams/Four beam spots FeSi supermirror m = 5 (SwissNeutronics) Cascade Detector: 16×16 Pixels, Pixel-Size = 6×6 mm²

Classic Frequency Ramsey

$$Asymmetry = \frac{N_{Trm} - N_{Rfl}}{N_{Trm} + N_{Rfl}}$$

Phase Ramsey – Modulated RF Signals

- Scan RF-phase between two spin-flippers instead of RF-frequency – always on resonance
- RF-amplitude modulated: π/2 flip for all wavelengths Triggered by chopper signal
- Measure only at "working point" (i.e. Asym = 0)

Two beam method allows for correction of (magnetic) drifts

Scan of the Magnetic Field

- Ramsey signal phase measured as a function of TOF, i.e. neutron wavelength
- ► Scan of magnetic field causes a change of the slope, similar to an EDM interaction

Electrodes and v×E-Effect

- v×E effect allows for a direct measurement of the electric field seen by the neutrons
- ► Here, magnetic field was intentionally tilted with respect to electric field direction

New complimentary neutron EDM search

Proof-of-principle experiments at ILL and PSI

- Data analysis ongoing
- ► Future full-scale experiment intended for ESS (ANNI)

Thank you for your attention!

Estelle Chanel, Anastasio Fratangelo, Alexander Gottstein, Andreas Gsponer, Zachary Hodge*, Ciro Pistillo, Dieter Ries**, Ivo Schulthess, Marc Solar, Torsten Soldner***, Oliver Stalder, Jacob Thorne, FP Open Post-Doc Position

- now at University of Washington
- now at University of Mainz
- Institute Laue-Langevin