Hidden quantum critical point in SrCo₂V₂O₈

L. Shen^{1, 2}, E. Campillo¹, O. Zaharko³, P. Steffens⁴, M. Boehm⁴, K. Beauvois⁴, B. Ouladdiaf⁴, Z. He⁵, J. O. Birk⁴, E. Jellyman², D. Prabhakaran⁶, A. T. Boothroyd⁶, and E. Blackburn^{1, 2}

¹Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden ²School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom ³Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁴Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France

⁵State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

⁶Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, United Kingdom

 $SrCo_2V_2O_8$ is composed of weakly coupled Co^{2+} chains along the crystallographic *c* axis. Each of these chains realizes the renowned spin-1/2 XXZ model in the Heisenberg-Ising regime. This model predicts a gapped Néel ground state at zero-temperature and a novel magnetic-field-induced (**B** // chain) Néel to Tomonaga-Luttinger liquid (TLL) quantum phase transition (QPT) at B_c , where the gap closes [1-2]. Due to the nonnegligible interchain interactions, all these states are experimentally accessible in $SrCo_2V_2O_8$ (sometimes in a slightly modified fashion), making it an ideal system to explore the exotic quantum spin states in one-dimension, e.g. spinons, psinons, antipsinons and Bethe strings [3-5].

The XXZ model is exactly solvable. Only two parameters are required to capture the magnetic properties; they are the spin anisotropy Δ and intrachain exchange J. In theory, Δ and J can be analytically obtained by measuring B_c and the saturation field B_{sat} , where a fully field-polarized ferromagnetic state is realized [6]. Consequently, a valid set of Δ and J must satisfy the experimentally evaluated B_c and B_{sat} values. In the literature, B_c is commonly assigned as the melting point B_m ($T \rightarrow 0$) = 3.9 T of the finite-temperature Néel order in this compound and the Δ and J have been determined accordingly [4, 5]. Nevertheless, no gap closure has been identified along the B_m (T) line.

In this talk, we will present experimental evidence for the spinon gap closure and TLL emergence in $SrCo_2V_2O_8$ at 2.0 T < B^* ($T \rightarrow 0$) < 2.5 T. First of all, we discuss the inelastic neutron scattering (INS) signature for spinon-spinon bound states with the quantum spin numbers $S = \pm 1$ and marginal spectral weights around 0.80 meV. Secondly, we demonstrate the neutron diffraction results which reveal the partial suppression of the bulk Néel order and emergence of a finite staggered magnetic moment along the chain at B^* . Last but not the least, we will show the INS spectra recorded between B^* ($T \rightarrow 0$) and B_m ($T \rightarrow 0$), which feature paired quasi-particle excitations of spinon-spinon (confined) and psinon-antipsinon; the latter directly supports the existence of a TLL in this region.

We determine a new set of Δ and J values by assuming $B_c = B^*$ ($T \rightarrow 0$). Using the Bethe ansatz, we find that the theoretical magnetization versus magnetic field curve excellently reproduces the experimentally measured one. Our results reveal a first-order-like Néel to TLL QPT around B^* . Other important aspects, including the nature of the $B_m(T)$ line and nontrivial interchain interactions, will also be addressed in this talk.

[1] F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).

[2] C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966).

- [3] A. K. Bera et al., Phys. Rev. B 96, 054423 (2017).
- [4] Z. Wang et al., Nature 554, 219 (2018).
- [5] A. K. Bera et al., Nature Physics 16, 625 (2020).

[6] J. des Cloizeaux and M. Gaudin, J. Math. Phys. 7, 1384 (1966)