

EUROPEAN SPALLATION SOURCE

Completion of Water-Cooled Backup Study

Eric Pitcher TAC-10

www.europeanspallationsource.se November 5, 2014

Outline

- Background
- Geometry selected for evaluation
- Neutronic performance
- Thermal and stress analyses
- Passive decay heat removal assessment
- Operational issues
- Concluding remarks

Background

- ESS baseline is a helium-cooled rotating tungsten target
- A backup water-cooled option has been evaluated as a hedge against unforeseen technical risks of the helium-cooled option
- A Water Task Force, chaired by Peter Sievers, was formed to evaluate the water-cooled option, with expertise from ESS, ESS-Bilbao, FZJ, RAL, KIT, PSI, and McManamy Consulting

Design selected for evaluation: cross-flow cannelloni geometry à la PSI SINQ target

- Zircaloy-clad tungsten with helium-filled gap
 - Tungsten rod dimensions: 10 mm ø by 80 mm tall
 - Clad thickness: 0.5 mm
- Packing fractions: 61% W, 14% Zr, 25% D_2O
- Target wheel segmentation into 33 sectors

Neutronic performance

- Cold source brightness of the water-cooled cannelloni geometry is 86% of that for the baseline helium-cooled geometry
- Lower performance principally attributed to the lower tungsten volume fraction

Tungsten temperature depends on the thermal contact at the tungsten-zircaloy interface

- The conductance between tungsten and zircaloy is weakly dependent on the contact pressure between 0.1 and 10 MPa
- Concern about the residual stresses in the zircaloy tube from press fitting motivates a 10- μ m gap filled with 1 bar helium, for which the gap conductance is 2.10⁴ W/m²·K
 - Sensitivity analysis shows the peak tungsten temperature is only weakly dependent on the gap conductance so long as it exceeds 10⁴ W/m²·K

EUROPEAN SPALLATION

Transient CFD simulations under pulsed proton beam conditions

- Post-pulse temperature on the zircaloy tube is <110°C, below the boiling point of water pressurized to ≥ 0.2 MPa
- Quasi-steady state simulations show ulletthe maximum post-pulse von Mises stress is ~30 MPa in the zircaloy tube and <70 MPa in the tungsten core
- Maximum stress in the • zircaloy tube is about half of the zircaloy-4 fatigue limit
- Peak stress in the tungsten lacksquarecore is about 10% of the yield stress

SOURCE

EUROPEAN SPALLATION

Transient pressure pulses in the water are ess not expected to be an issue

EUROPEAN SPALLATION SOURCE

• Power per pulse:

- ESS: 357 kJ in 2.86 ms
- SNS: 23 kJ in 0.7 μs
- LANSCE and ISIS: 3 kJ in <1 μs
- Transient pressure pulses in the water due to:
 - Thermal expansion of the water from a 4 K temperature increase
 - Thermal expansion of the cannelloni
- Analysis of confined water volume gives rise to pressures >1 MPa
- Unconfined water should greatly reduce pressure pulses

transient pressures in water

Experimental investigation of flow choking due to film boiling

- Experimental set-up: glass tube immersed in water flow
- Air or vapor bubbles introduced at the water inflow
- Air bubbles: entrained in the water, no choking
- Vapor bubbles: collapsed within 1 s
- Conclusion: flow choking is not likely for cannelloni design

Passive decay heat removal is an important safety attribute for the target

- Maintaining tungsten below 700°C during a loss-ofcoolant accident (LOCA) confines the vast majority of radionuclides to the tungsten
- ESS-Bilbao calculated decay heat data for the cannelloni geometry (45 kW at beam shutdown)
- Decay heat removal analyses were performed based on 2-D axisymmetric models

Group	SS316 emissivity	Steel shielding emissivity	Initial W temperature (°C)	Initial steel shield temp (°C)	Gap composition in double-walled shroud	Time dependence of shield temperature	Maximum tungsten temperature (°C)
ESS-Bilbao	0.66		25	25	20v% SS316 80v% water vapor	Actively cooled to 25°C	400
McManamy Consulting	0.6	0.4	100	50	100v% water vapor	No active cooling, serves as ultimate heat sink	530

Calculations indicate that passive cooling is sufficient for decay heat removal

EUROPEAN SPALLATION SOURCE

• Sensitivity analyses performed by McManamy:

Case	SS316 emissivity	SS316 missivity emissivity		Shroud interstitial gap material composition	Gap between shroud & shielding (mm)	Maximum tungsten temp (°C)
1	0.66	0.4	5	water vapor	20	530
2	0.3	0.3	5	water vapor	20	635
3	0.66	0.66	5	20v% SS316 80v% water vapor	20	380
4	0.1	0.3	5	20v% SS316 80v% water vapor	15	607

- Ribs between walls are important conduction paths
- Conclusion: Passive cooling of the decay heat is viable for the water-cooled backup
- Impact of the moderator-reflector system on decay heat removal from the target not analyzed, but will be for the helium-cooled option

Passive cooling is sufficient for removal of decay heat

- There was concern that safety of the water-cooled option could only be satisfied using active removal of decay heat
- The results indicate that decay heat can be removed passively, but the margin with passive cooling is not huge
- SSM condition for the start of construction is predicated on the successful realization of the helium-cooled tungsten target
 - Licensing for water-cooled option would not be automatic, and would only work if helium is proved impractical (larger margins)

Operational Issues

- Scaling the water plant from existing spallation source facilities to ESS conditions should be straightforward
- Assuming 10% of tungsten-produced tritium diffuses into the heavy water produces a concentration of ~7 GBq/kg per year of operation, which is <1% of the concentration levels found in heavy water fission reactors

Concluding Remarks

- A water-cooled rotating tungsten target appears viable in terms of:
 - Neutronics
 - Thermal-hydraulics
 - Mechanical design
 - Safety
 - Operations
- Decay heat can be removed passively, but the margin with passive cooling is not huge
- The water-cooled option will be retained as a viable backup to the baseline helium-cooled option