Work package 8

Objectives

The main objective of this WP is to provide a conceptual design of the NNBAR experiment

nnbar experiment

Search for $n \rightarrow \overline{n}$ with a precision improvement of 1000 wrt last experiment at ILL

Unique observable which addresses baryogenesis, dark matter..

Improvement made possible by advances in neutronics, cold ESS flux and ~200m beamline for ESS.

Basic principles of the nnbar experiment and WP8

Extract and focus neutrons from lower moderator to a distant (200m) carbon target.

Neutrons propagage in a field-free region to allow $n \to \bar{n}$

 $\bar{n} + N \rightarrow \sim 5\pi$

Final state observed in annihilation detector

Coupled to WP4 (moderator design) and WP6 (advanced reflector)

Tasks and deliverables

Description of work

Task 8.1 Design of the NNBAR magnetic shield SU (M1-6)

<u>Task 8.2</u> Development of a Geant-based model of different detector geometries and technologies. This includes, e.g., silicon-based tracking vs a Time Projection Chamber and a crystal calorimeter vs a sampling calorimeter SU (M1-12)

Task 8.3 Development of McStas components for single nested-mirror banks and Wolter optics ILL (M1-12)

<u>Task 8.4</u> Generation of a McStas model for nested mirror optics and a parabolic neutron trumpet, taking into account the neutron source and the NNBAR setup parameters; simulations comparing the different mirror systems; preparation of publication of simulation results **ILL**, **SU** (M12-24)

<u>Task 8.5</u> Development of a full model of the NNBAR experiment incorporating the Geant-based detector model with simulations of antineutron annihilation and flux estimations based on McStas simulations SU (M15-18)

<u>**Task 8.6**</u> Background estimations (spallation and non-spallation) together with the development of background-discrimination algorithms SU(M18-24)

<u>**Task 8.7**</u> Optimization of a model of sensitivity for the NNBAR experiment for physics performance and cost, using the complete experiment model from beam extraction to detector response and incorporating background estimations; preparation of publication of results **SU** (M24-34)

Deliverables

D8.1 McStas components of a single nested-mirror-bank and Wolter optic for general purpose neutron extraction from a moderator (M12)

D8.2 Paper submitted for publication on the development of a full model of the NNBAR experiment (M18) D8.3 Paper submitted for publication on comparative McStas simulations of optimized nested-mirror neutron extraction systems and a parabolic neutron trumpet for NNBAR (M24)

D8.4 Conceptual design report paper on NNBAR design, expected physics performance and cost (M34)

Nested focusing super-mirror for nnbar:

Larger viewable area of the lower moderator -> optimised imaging insturment to extract a large divergence neutron flow and focus over long distance (~200m).

Design nested mirror systems of a single set of elliptic/short mirrors and of Wolter-optic types.

Annihilation detector

Isotropic – order 100 MeV particles.

Detector technology choices

- Aim for optimal detector (technology and cost)
- Signal isotropic $4-5\pi$ at 100-300 MeV.
- Charged particle and photon reconstruction
- Pointing resolution precision vertex/target pointing + particle identification)
- Optimal Timing resolution

Subdivision of detector tasks

- Expansion of modules to full Geant-4 detector with basic TPC/silicon + scintillator/lead-glass
- Tentative estimates of worst case bg scenarios
- Characterisation and variation of detector parameters
 - Granularity, cell size
- Reconstruction algorithms for hit and energy clustering
- Identification of sensitive variables (invariant mass, track multiplicity, sphericity...)
- Triggering strategy (photon + scintillator)
- Performance and figure of merit for signal reconstruction.
- Investigate different technology choices with alternative Geant-4 model
 - Eg drift chamber + sampling calorimeter.
- Full optimisation of detector parameters with precision predictions of background sources.

Subdivision of background tasks

- Aim for a zero background experiment as for ILL
 - Previous search at ILL dominated by cosmics
 - NNBAR at a spallation source
- Cosmic background (charged and neutral)
- Spallation backgrounds full NNBAR model from moderator to the target
- Background radiation (gamma, scattered fast and epithermal neutrons) also related to shielding
- Skyshine
- Activation of structure materials
- Shielding strategy
- Contribution of NNBAR to other experiments

Horizontal cut through the NNBAR opening in the monolith (overlap Monte Carlo model and drawing)

Current detector status

Geant-4 simulation implementing silicon layers, TPC volume and calorimeter.

Personpower plan

Work package number	8	Lead beneficiary				SU		
Work package title	Fundamental Physics							
Participant number	1	2						
Short name of participant	SU	ILL						
Person months per participant:	24	24						
Start month	1			End month	36			

ILL – senior scientist (O. Zimmer) and postdoctoral scientist who starts in January 2021. SU – PhD student , senior scientist (D. Milstead) and a consultant/postdoc.

Summary

- Work package 8 underway
- Design of NNBAR experiment
- Principal tasks of neutron focusing and detector design.

Magnetic shielding

Basic design

- Passive shielding multi-layer magnetisable material for passive.
- Active shielding by coils

Status

Task 8.1 Basic design of magnetic shield

Task 8.2 First Geant simulations of basic detector modules.

Task 8.3 Basic McStas components set up which can be used for single-nested mirror banks