A combined computational and experimental approach to studying complex oxide ion conductors

Chloe Fuller







Joseph R. Peet (Durham & ILL)

- Bernhard Frick (ILL)
- Michael M. Koza (ILL)
- Mark R. Johnson (ILL)
- Andrea Piovano (ILL)
- Ivana Radosavljevic Evans (Durham)



#### Solid Oxide Ion Conductors

#### 

#### Solid Oxide Ion Conductors





#### Structure-Property Relationships



#### Methods – Quasi-elastic Neutron Scattering



#### Methods – Quasi-elastic Neutron Scattering



#### Methods – Quasi-elastic Neutron Scattering



- Predictive
- Atomic-level detail
- Comparable time/length scale to QENS

- Predictive
- Atomic-level detail
- Comparable time/length scale to QENS



- Predictive
- Atomic-level detail
- Comparable time/length scale to QENS



- Predictive
- Atomic-level detail
- Comparable time/length scale to QENS

- Theory is hard
- Computationally expensive
- Qualitative













J. Am. Chem. Soc. 2019, 141, 25, 9989–9997









#### **T-dependence of Γ**



$$E_{a} = 0.39(4) \text{ eV}$$



#### **T-dependence of Γ**







 $E_{a} = 0.39(4) \text{ eV}$ 



• Simulations using VASP, 240 ps, 279 atoms, 3 temperatures



• Simulations using VASP, 240 ps, 279 atoms, 3 temperatures











|                 | Number of Jumps |              |              |
|-----------------|-----------------|--------------|--------------|
| Jump type       | 200 °C          | 400 °C       | 600 °C       |
| VO <sub>x</sub> | 339 (69.3%)     | 863 (59.3 %) | 1062 (55.8%) |
| V-Bi / Bi-V     | 29 (8.0%)       | 143 (9.8%)   | 214 (11.3%)  |
| Bi-O            | 111 (22.7%)     | 450 (30.9%)  | 628 (32.9%)  |
| Total           | 489             | 1456         | 1904         |



|                 | Number of Jumps |              |              |
|-----------------|-----------------|--------------|--------------|
| Jump type       | 200 °C          | 400 °C       | 600 °C       |
| VO <sub>x</sub> | 339 (69.3%)     | 863 (59.3 %) | 1062 (55.8%) |
| V-Bi / Bi-V     | 29 (8.0%)       | 143 (9.8%)   | 214 (11.3%)  |
| Bi-O            | 111 (22.7%)     | 450 (30.9%)  | 628 (32.9%)  |
| Total           | 489             | 1456         | 1904         |

#### **Recipe for Success**

- Extended Bi-O network
- Variable V<sup>5+</sup>
  coordination
- Facile localised motion



- Observed conduction process with QENS
- Simulated same process with MD
- MD revealed additional localised motion
- Identified key structural features
- Use them to develop better conductors

