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NMX – A quasi-Laue time-of-flight 
diffractometer with high q-resolution

Cold moderator

m=1 is sufficient on three sides, 	


m=2.2 for curving

Adjustable opening 
chopper allows flexible 
bandwidth selection.

Three 60 x 60 cm detectors 
with 0.2 mm spatial resolution 
Variable sample-detector 
distance (0.2-1.0 m)	


Variable 2θ angle (0-110°)

Collimation section giving 
flexibility in beam size and 
divergence

Six-axis robot allows 
selecting crystal orientation

•Match beam size to sample size (max 5 x 5 mm)


•Match beam divergence to sample mosaicity (max. 
±0.2°)


•Maximize (useful) flux at sample!

1.74 Å wavelength band 
(1.8-3.55 Å)

Moderator

0 m
2 m 154.1 m

Optics cave

157.6 m

Sample

Detectors!
on robots

157.6 m

32 m 80 mBandwidth !
choppers

Common shielding bunker
Experimental cave

6 m

Target monolith

Frame 
overlap 
mirror

Straight guide

Curved guide
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Game-changer for 
neutron crystallography

Enzyme mechanisms


Protein-ligand interactions


Proton transport across 
membranes

Drug design

Where are hydrogens 
important? Materials Science 

applications

Large-scale magnetic 
structures - Charge ordering, 
Ferroelectrics, Skyrmions


High-pressure, high-
temperature diffraction -
Hydrated phases in the Earth’s 
mantle Hydrous phases 

•  Transport of water to 
deep mantle in 
subduction zones? 

•  10 Å Phase 
•  Hydroxyl and water 

molecules 
•  Variable amounts of 

water 

Fumagalli et al. (2002) EPSL!

“There is no alternative to neutron 
crystallography in order to uniquely 
identify the location of protons, which 
is of particular importance when 
dealing with proton translocating 
proteins” H. Michel, MPI of Biophysics

“This proposed beam line opens a wide, 
new field of opportunity as a state-of-the-
art workhorse facility for obtaining accurate 
models of biological macromolecules 
(protein, RNA, DNA), in particular with 
experimentally based knowledge of the 
location of hydrogen atoms and therefore 
the fine structure of bonds, active sites and 
drug interactions. Furthermore, proper 
insight will be gained in- to water 
interactions – i.e. key principles of life.” 
Prof. Poul Nissen et al., Aarhus University
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Optics overview
Damian Martin Rodriguez

Curved inside bunker, optimised for 
maximum brilliance transfer at 2Å

• Monolith insert horizontally straight, 
vertically tapers from 31 mm to 46 
mm, m =2 horizontal, m = 1 vertical


• 1.2 km curvature radius within bunker


• m = 2.2 on the curve, otherwise m = 1


• Line of sight lost at 31.5 m from the 
moderator


• Straight guide up to 154.1 m from the 
moderator, m = 1


• Frame overlap mirror for λ > 10 Å

Figure 2: Brilliance transfer as a function of the neutron wavelength at the sample
position and with a divergence of 0.2�, for Option 4 with a frame overlap mirror in
the position described in fig. 1.

Figure 3: Illustration of Overillumination.

11
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Choppers

•Choppers are for wavelength 
selection

•Single disc chopper at 32 m, co-
rotating double disc chopper at 80 
m

•Transmission has priority

•Frame overlap suppressed for λ < 
12.4 Å 

•Penumbra should be minimized

•No choppers in common bunker

Always 14Hz

Control bandwidth 
by change of 

phase and variable 
openings



Detector geometry

•Solid angle coverage can be 
traded for unit cell size


•Large unit cells will take 
longer to collect 

Three 60 x 60 cm 
detectors with 0.2 mm 
spatial resolution 	


Sample-detector distance 
(0.2-1.0 m) and 2θ angle 
(0-110°) variable by 
robotic positioning

Robotic goniometer 
allows choice of sample 
rotation axis direction



Detectors - technological risk 
and mitigation strategy

•R&D required to reach 0.2 mm spatial resolution 
with reasonable area and efficiency


•Gd coated gas electron multiplier (GEM) detectors 
promising - prototypes developed at CERN 


•Decision on detector technology is needed late 2016


•ESS Detector Group has prioritised this R&D - 
collaboration with CERN (2 FTE from autumn 2013)


•Boron coated GEM is a fallback option with 
compromised efficiency
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Spreading background 
over time-of-flight

Pixel with�

only back
ground

Intensity

Time-of-flight

Intensity

Time-of-flight

Pixel with a reflection �

and background

Laue method ➔ 
signal at one 
wavelength, 
background across 
entire band 
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Spreading background 
over time-of-flight

Pixel with�

only backg
round

Intensity

Time-of-flight

Intensity

Time-of-flight

Pixel with a reflection �

and background

Laue method ➔ 
signal at one 
wavelength, 
background across 
entire band 

Biggest change 
from proposal is 
source brilliance!
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Flux at sample – time averaged

•By Monte Carlo simulation 1.8 x 109 n/s/
cm2 at ±0.2° divergence


•By Monte Carlo simulation 9.4 x 108 n/s/
cm2 at ±0.1° divergence


•In proposal analytically 3 x 108 n/s/cm2 

at ±0.1° divergence (simulations agree)


•LADI-III 5 x 107 n/s/cm2, divergence 
unclear


•PCS 9.7 x 106 n/s/cm2 at ±0.1° 
divergence

Factor 3

Factor 18

Factor 100
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Flux at sample – time averaged

•By Monte Carlo simulation 1.8 x 109 n/s/
cm2 at ±0.2° divergence


•By Monte Carlo simulation 9.4 x 108 n/s/
cm2 at ±0.1° divergence


•In proposal analytically 3 x 108 n/s/cm2 

at ±0.1° divergence (simulations agree)


•LADI-III 5 x 107 n/s/cm2, divergence 
unclear


•PCS 9.7 x 106 n/s/cm2 at ±0.1° 
divergence

Factor 3

Factor 18

Factor 100

Should be realistic to collect 
0.1 mm3 crystal in < 1 day
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Bovine heart 	


cytochrome c oxidase	


P212121	


a = 182.59 Å 	


b = 205.40 Å 	


c = 178.25 A	


Detector distance 1 m

Campbell et al. J. Appl. Cryst. (1998). 31, 496-502 
Artz et al. J. Appl. Cryst. (1999). 32, 554-562 

Helliwell, J.R. et al. J. Appl. Cryst. (1989) 22, 483−497

Generated using the 
Daresbury Laue Suite
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Overlap separation 
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Magnetic crystallography at a 
macromolecular diffractometer

BioDiff, FRM-2, Munich

! = 4.75Å (hk0) 

(000) 
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⅓(110) 

⅓(7-20) 

⅓(5-10) 

(0.5°)  

(0.5°)  

(0.25°)  

(0.25°)  

λ= 4.75 Å
Johannes Reim, Werner Schweika (FZJ, ESS), Andreas Ostermann, Tobias Schrader (TUM)
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With NMX integrated 
intensities can be 
obtained with a single 
orientation without 
sacrificing q-resolution
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Magnetic crystallography at a 
macromolecular diffractometer

BioDiff, FRM-2, Munich

! = 4.75Å (hk0) 

(000) 

(100) 

⅓(110) 

⅓(7-20) 

⅓(5-10) 

(0.5°)  

(0.5°)  

(0.25°)  

(0.25°)  

λ= 4.75 Å
Johannes Reim, Werner Schweika (FZJ, ESS), Andreas Ostermann, Tobias Schrader (TUM)

With NMX integrated 
intensities can be 
obtained with a single 
orientation without 
sacrificing q-resolution

Data collection > 300 
times faster!
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Magnetic structures at ESS NMX
•Magnetic ordering in a proposed charge-
ordered ferroelectric (LuFe2O4)


•Magnetic superstructure peaks easily 
integrateable


•q-resolution allows peak splitting to be 
observed

Manuel Angst (FZJ)
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q=2.01 Å-1

0 2 5�
�=4.511 Å�
q=2.34 Å-1

c*

a*

�q (FWHM)=0.029 Å-1

�q (FWHM)=0.036 Å-1
FWHM=3 mm

FWHM=2.9 ms

Simulated magnetic reflections
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Budget overview

Manuel Angst (FZJ)

Cold comm.!
4%

Installation!
4%

Procurement!
69%

Design!
9%

Management!
15%

Work Unit Management Design Procurement Installation Cold 
commissi
oning

Total

Instrument Team 
1	
  150	
  560	
  € 633	
  120	
  € 4	
  224	
  541	
  € 352	
  229	
  € 88	
  800	
  € 6	
  449	
  250	
  €

Neutron Optics 
and Shielding 
Group 

0	
  € 0	
  € 909	
  000	
  € 0	
  € 0	
  € 909	
  000	
  €
Neutron Chopper 
Group 

74	
  360	
  € 53	
  920	
  € 517	
  280	
  € 30	
  560	
  € 13	
  560	
  € 689	
  680	
  €
Neutron Detector 
Group

126	
  750	
  € 243	
  000	
  € 2	
  012	
  200	
  € 0	
  € 276	
  600	
  € 2	
  658	
  550	
  €
Sample 
Environment 
Team 5	
  760	
  € 4	
  320	
  € 5	
  760	
  € 2	
  400	
  € 2	
  400	
  € 20	
  640	
  €
Motion Control 
and Automation

59	
  400	
  € 66	
  720	
  € 144	
  220	
  € 5	
  040	
  € 56	
  880	
  € 332	
  260	
  €
Personnel Safety 
System

3	
  080	
  € 53	
  760	
  € 70	
  000	
  € 30	
  720	
  € 19	
  200	
  € 176	
  760	
  €
Phase 1 270	
  000	
  € 270	
  000	
  €
Total 1	
  689	
  910	
  € 1	
  054	
  840	
  € 7	
  883	
  001	
  € 420	
  949	
  € 457	
  440	
  € 11	
  506	
  140	
  €

Instrument Team!
30%

Shielding!
21%

Support infrastructure!
4%Utilities distribution!

1%
Sample environment!

0%

Beam monitors!
2%

PSS!
2%

Detectors!
21%

Control and automation!
6%

Choppers!
6%

Optics!
8%

Non labour Labour

6 853 041 € 4 653 099 €
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NMX staging plan – based 
on Cost Category letter

• NMX was assigned Cost 
Category B (12 M€)


• Cost estimate 11 506 140 €

• Staging plan becomes 

upgrade plan

• Upgrade 1 (to Cost Category 

limit): Enriched Gd coating, 
efficiency increase from 20% 
to 35 %, cost estimate 300 k
€ -1 M€


• Upgrade 2 (beyond Cost 
Category limit): 3 more 
detectors, doubles 
throughput, cost estimate 
(very rough) 1,8 M€
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NMX cost risks and mitigation 
– descoping

Risk Probability Consequence Mitigation Comments

Detector cost 
estimates are 
exceeded

2 2
Use of 
contingency, 
descoping

Shielding 
thickness 
increases after 
neutronics 
calculations

2 2
Use of 
contingency, 
descoping 
detectors

In the case of a large 
cost increase in 
shielding, NSS 
contingency may be 
released

Optics cost 
increases 1 2

Use of 
contingency, 
descoping 
detectors
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NMX scope contingency

Item Scope 
reduction Cost impact Scientific 

impact Comments

Detector unit Not procure 343 k€/unit increased data 
collection time

Per unit cost 
increases ~100% if 

procured one by 
one

Sample 
environment Not procure 67 k€ Some experiments 

become impossible
Short lead time in 

procurement

Chopper 2 2nd 
disc Leave out 60 k€ Cannot tailor 

bandwidth
Not readily 
recoverable
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Questions?


