# Review of the OpenXAL Framework

### Yngve Inntjore Levinsen on behalf of M. Munoz and the Beam Physics Group

AD and ICS Retreat mtg 2014





### Motivation

- An API layer or framework is needed for control room applications for the accelerator
  - Maintainability
  - Speed up software development
  - Aid during commissioning
- OpenXAL proposed by ICS as a suitable framework





### Beam Physics Requirements - Major Points

- Need to have an online model which performs reasonably accurate, **fast** calculations of the beam dynamics for ESS
- Need an structured access to the accelerator components
- Previous deployment in working accelerator considered very valuable



### Beam Physics Requirements - Major Points

- Need to have an online model which performs reasonably accurate, **fast** calculations of the beam dynamics for ESS
- Need an structured access to the accelerator components
- Previous deployment in working accelerator considered very valuable
- Reasonably easy API (for physicists) and good documentation is important
- Should support both interactive scripting and standalone programs



### Beam Physics Requirements - Major Points

- Need to have an online model which performs reasonably accurate, **fast** calculations of the beam dynamics for ESS
- Need an structured access to the accelerator components
- Previous deployment in working accelerator considered very valuable
- Reasonably easy API (for physicists) and good documentation is important
- Should support both interactive scripting and standalone programs
- Full access to source code and possibility of extending code is essential
- Need to have access to other services provided by ICS



ESS Linac























Open XAL is an open source development environment used for creating accelerator physics applications, scripts and services. This project is a collaboration among SNS, CSNS, ESS, GANIL, TRIUMF and FRIB.

- OpenXAL originates from SNS
- Main developers are T. Pelaia and C. Allen
- Additions for ESS developed by ICS for some time already (E. Laface, I. List)





#### Main Features

- Pure Java Framework
- Online Modeling
- Application Collection
- Structural representation of the accelerator components
- Structured access to EPICS





### **ESS Specific Features**

- Java ESS Linac Simulator (main area of development at the moment)
- Import from database (deprecated)
- Import from LinacLego





## ELS/JELS

- ELS ESS Linac Simulator
- JELS = Java version
- Fast envelope calculations
- Space charge model included
- Thorough benchmarking performed







I. List, E. Laface, IPAC'14



### Example Applications - Virtual Accelerator

| 9 😐 🔍                   |                              | Virtual Accelerator - (mebt) - Untitled.v | a*            |          |        |
|-------------------------|------------------------------|-------------------------------------------|---------------|----------|--------|
| Probe Editor Set Noise. | Sync Period Start VA Stop VA |                                           |               |          |        |
|                         |                              | VAData DiagPlot                           |               |          |        |
|                         |                              |                                           |               |          |        |
| ilter:                  |                              |                                           |               |          |        |
| Node                    | Readback PV                  | Readback                                  | Setpoint PV   | Setpoint |        |
| QP1                     | QP1:B                        | -16.1578                                  | QP1:FldSet    |          | -16.15 |
| TS1-VC                  | TS1-VC:B                     | 0.0                                       | TS1-VC:FldSet |          |        |
| TS1-HC                  | TS1-HC:B                     | 0.0                                       | TS1-HC:FldSet |          |        |
| QP2                     | QP2:B                        | -16.1578                                  | QP2:FldSet    |          | -16.15 |
| QP3                     | QP3:B                        | 19.4008                                   | QP3:FldSet    |          | 19.40  |
| TS2-VC                  | TS2-VC:B                     | 0.0                                       | TS2-VC:FldSet |          |        |
| TS2-HC                  | TS2-HC:B                     | 0.0                                       | TS2-HC:FldSet |          |        |
| QP4                     | QP4:B                        | 19.4008                                   | QP4:FldSet    |          | 19.40  |
| GAP1                    | GAP1:AmpAvg                  | 0.125435                                  | GAP1:AmpCtl   |          | 0.12   |
| GAP1                    | GAP1:PhsAvg                  | -90.0                                     | GAP1:PhsCtl   |          | -9     |
| OP5                     | OP5:B                        | -14.2708                                  | OP5:FldSet    |          | -14.27 |
| TS3-VC                  | TS3-VC:B                     | 0.0                                       | TS3-VC:FldSet |          |        |
| TS3-HC                  | TS3-HC:B                     | 0.0                                       | TS3-HC:FldSet |          |        |
| OP6                     | OP6:B                        | -14.2708                                  | OP6:FldSet    |          | -14.27 |
| 0P7                     | OP7:B                        | 2.05                                      | OP7:FldSet    |          | 2.0    |
| GAP2                    | GAP2:AmpAvg                  | 0.0623499                                 | GAP2:AmpCtl   |          | 0.06   |
| GAP2                    | GAP2 PhsAvg                  | -90.0                                     | GAP2:PhsCtl   |          | _0     |
| DP8                     | OP8 B                        | 8 22001                                   | OP8 FldSet    |          | 8.7    |
| TS4-VC                  | TS4-VC·B                     | 0.0                                       | TS4-VC FidSet |          |        |
| TS4=HC                  | TS4=HC'B                     | 0.0                                       | TS4-HC EldSet |          |        |
| OP9                     | OP9-B                        | 8 22001                                   | OP9-FldSet    |          | 8 7    |
| 0010                    | OP10:B                       | -15 5667                                  | OP10:FidSet   |          | -15.56 |
| 55_WC                   | TSS_VCB                      | 15:5007                                   | TSS_VC EldSat |          | 13.50  |
| ISS-WC                  | TSS-WCB                      | 0.0                                       | TSS_HC EldSat |          |        |
| 100-110                 | OR11:R                       | -15 5667                                  | OR11-EldSet   |          | -15.56 |
| 2012                    | OP12:R                       | -13.3007                                  | OP12:EldSet   |          | -13.30 |
| 2F12                    | CF12.B                       | 5.00031                                   | TSE VC EldSat |          | 5.00   |
| IS6-HC                  | TS6-HCB                      | 0.0                                       | TS6_HC EldSet |          |        |
| 0012                    | 0013-R                       | 0.0                                       | OB12 EldSet   |          | 0.00   |
| 2014                    | QF13.B<br>Q014.B             | 9.00031                                   | QP15.FldSet   |          | 9.00   |
| UF 14<br>FE 7, MC       | QF14.6                       | -9.43731                                  | UP14.FluSet   |          | -9.4   |
| 137-VC                  | 137-VC.B                     | 0.0                                       | TS7-VC.FldSet |          |        |
| 137-HC                  | 137-HC.B                     | 0.0                                       | 157-HC.HdSet  |          |        |
| CAD2                    | CAD2 America                 | -9.45/31                                  | CAB2: Amp Cil |          | -9.4   |
| CARD                    | GAR3: AMDAVG                 | 0.14601                                   | CARS Ampet    |          | 0.14   |
| UMED                    | GAP3:PhSAVg                  | -90.0                                     | GARSTPISCU    |          | -9     |
| UN10                    | QP16:B                       | 18.9722                                   | QP16:HdSet    |          | 18.97  |
| 158-VC                  | 158-VC:B                     | 0.0                                       | 158-VC:HdSet  |          |        |
| 158-HC                  | 1 28-HC:B                    | 0.0                                       | 158-HC:HdSet  |          |        |
| QP17                    | QP17:B                       | 18.9722                                   | QP17:FidSet   |          | 18.97  |
| QP18                    | QP18:B                       | -31.2924                                  | QP18:FldSet   |          | -31.29 |
| TS9-VC                  | TS9-VC:B                     | 0.0                                       | TS9-VC:FldSet |          |        |

11. December, 2014

AD and ICS Retreat mtg 2014

9 / 13



### Example Applications - Quad Scan in Python





#### Example Applications - RF Phase Scan in Python



11. December, 2014

AD and ICS Retreat mtg 2014

н



### OpenXAL

- ... has a good and fast model already implemented (ELS)
- ... has defined an organized view of the accelerator (XML)
- ... will soon be deployed at SNS (XAL has already been tested)





### OpenXAL

- ... has a good and fast model already implemented (ELS)
- ... has defined an organized view of the accelerator (XML)
- ... will soon be deployed at SNS (XAL has already been tested)
- ... supports both Java applications and scripting in e.g. Python, Ruby, Matlab
- ... has an acceptable API, decent documentation (could be improved)
- ... is open source, we can extend at will
- $\bullet$   $\ldots$  will be interfaced with other tools provided by ICS







# Further Documentation

- OpenXAL Homepage
- ESS Wiki
- CHESS Link to BP Review (to be published)
- OpenXAL Status Report 2013

