

Visualization of engineered residual strain in additive manufacturing materials

Agenda

- 1 Setting the stage: Additive Manufacturing and Neutron Imaging
- 2 First results: proof of concept
- 3 Further measurements: new results and outlook

Additive Manufacturing (with metal)

- "Process to build a 3D object from a CAD model by successive addition of material, usually layer by layer" (ex.: Selective Laser Melting)
- PROS: rapid prototyping, complex shapes, lighter parts, fewer moving components, highly customizable
- CONS: slow build rate, no parallelization, many tunable parameters, post processing often required, poor mechanical properties

Additive Manufacturing (with metal)

- "Process to build a 3D object from a CAD model by successive addition of material, usually layer by layer" (ex.: Selective Laser Melting)
- PROS: rapid prototyping, complex shapes, lighter parts, fewer moving components, highly customizable
- CONS: slow build rate, no parallelization, many tunable parameters, post processing often required, poor mechanical properties

Additive Manufacturing (with metal)

- "Process to build a 3D object from a CAD model by successive addition of material, usually layer by layer" (ex.: Selective Laser Melting)
- PROS: rapid prototyping, complex shapes, lighter parts, fewer moving components, highly customizable
- CONS: slow build rate, no parallelization, many tunable parameters, post processing often required, poor mechanical properties

Residual stress on AM samples

- In Additive Manufacturing, geometry is established at the same time as crystallographic parameters
- Depending on the AM technique, a large number of deposition parameters and post processes can be tuned, resulting in widely different properties of the finished product
- Tensile residual stress is often encountered at the surface, leading to cracking, corrosion and in general poor fatigue resistance

Laser Shock Peening

10,000,000

Ti-6Al-4V: Fretting Fatigue Resistance

100,000 Cycles to Failure 1,000,000

100

1,000

10,000

Neutron imaging with energy resolution

Wavelength [Å]

Neutron imaging with energy resolution

Wavelength [Å]

Bragg Edges

Bragg's law:

λ=2dsinθ

 $2d_{hkl}\sin\theta = \lambda$ $2d_{hkl}\sin\theta = \lambda$ $2d_{hkl}\sin\theta < \lambda$

Strain Imaging

First experiments (RADEN @JPARC)

Experiment schematics

lattice distance d (strain Dd/d₀) measured in beam direction, and integrating over thickness spatially resolved over cross section (analyzed for 111 peak of fcc Fe)

2021-06-02

beam

Spectra analysis (pixel-wise)

Spectra analysis (pixel-wise)

Next steps

More advanced fitting

Advanced Bragg edge Fitting:

$$\begin{split} \operatorname{Tr}(\lambda) &= \exp \left[-(a_0 + b_0 \lambda) \right] \\ &\times \left(\exp \left[-(a_{hkl} + b_{hkl} \lambda) \right] + \left\{ 1 - \exp \left[-(a_{hkl} + b_{hkl} \lambda) \right] \right\} \right) \\ &\times \frac{1}{2} \left[\operatorname{erfc} \left(-\frac{\lambda - \lambda_{hkl}}{2^{1/2} \sigma} \right) - \exp \left(-\frac{\lambda - \lambda_{hkl}}{\tau} + \frac{\sigma^2}{2\tau^2} \right) \right. \\ &\times \operatorname{erfc} \left(-\frac{\lambda - \lambda_{hkl}}{2^{1/2} \sigma} + \frac{\sigma}{\tau} \right) \right], \end{split}$$

Edge position = 4.140657306309953 Edge height = 0.6986338585953783 Edge width = 0.012508366080305222 idx_low = 476 idx_high = 482

Gaussian Bragg edge Fitting:

Fit the transmission derivative with a Gaussian h

https://github.com/neutronimaging/ToFImaging

Parametric study of LBPF and 3D-LSP

Additive Manufactoring samples:

Stainless Steel 316L

Different Laser Shock Peening (LSP):

- 2D LSP
- Buried (B)
- 3D LSP (2D + B)
- As Built (AB)

AM Parameters: Strategy (Parallel/Chess), Density (Low/High), Supports (No/Yes)

LSP Parameters: Strategy (AB/B/2D/3D), Energy(1.0/1.5), Overlap(0.4%/0.8%)

Scanned with Bragg Edge Imaging at RADEN (J-PARC, JAPAN)

AM parameters

LPBF Parameters: Strategy (Parallel/Chess), Density (Low/High), Supports (No/Yes)

defects

One set of parameters carried out the best and most consistent results of bulk density

10

LSP parameters

Main findings:

- I. 3D-LSP, is able to push the CRS deeper into the sample compared to 2D-LSP
- II. The best results are found for 1.5 J and 80% overlap
- III. The overlap has higher influence than the laser energy

Questions?