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Agenda

1 Setting the stage: Additive Manufacturing and Neutron Imaging
2 First results: proof of concept

3  Further measurements: new results and outlook
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Additive Manutacturing (with metal)

* "“Process to build a 3D object from a CAD model by successive addition of
material, usually layer by layer” (ex.: Selective Laser Melting)

» PROS: rapid prototyping, complex shapes, lighter parts, fewer moving
components, highly customizable

* CONS: slow build rate, no parallelization, many tunable parameters, post
processing often required, poor mechanical properties
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Additive Manutacturing (with metal)
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* In Additive Manufacturing,
geometry is established at
the same time as
crystallographic
parameters

* Depending on the AM
technique, a large number
of deposition parameters
and post processes can be
tuned, resulting in widely 0
different properties of the =°°
finished product

» Tensile residual stress is
often encountered at the
surface, leading to 10
cracking, corrosion and in I
general poor fatigue
resistance
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Laser Shock Peening

THE PROCESS

Laser pulse travese direction
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Neutron imaging with energy resolution @
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Neutron imaging with energy resolution @
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Energy-selective Imaging: Bragg edge analysis @
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Energy-selective Imaging: Bragg edge analysis @
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Energy-selective Imaging: Bragg edge analysis @
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Energy-selective Imaging: Bragg edge analysis @
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Energy-selective Imaging: Bragg edge analysis @
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Energy-selective Imaging: Bragg edge analysis @
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Strain Imaging




First experiments (RADEN @JPARC) @

In measurement stands ug




Experiment schematics

View from the top:

Info in every pixel of image:
. Bragg edges
Imaging detector 200 111
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reference lattice distance d (strain Dd/d,) measured in

beam direction, and integrating over thickness

Reference serves| sample

as measure of d, spatially resolved over cross section

(analyzed for 111 peak of fcc Fe)




Spectra analysis (pixel-wise

Full spectrum Edge identification Edge fitting
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Spectra analysis (pixel-wise

Full spectrum Edge identification Edge fitting
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Strain map
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Strain map
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Next steps

2000
1

More advanced fitting routines
Strain determination as a function of:
—LSP parameters (scanning strategy, laser power, laser spot
| overlap)
—3D LSP
—Geometry
Outlook: in-situ strain measurement




More advanced fitting

Advanced Bragg edge Fitting:

Tr(2) = exp[—(ao e b()k)]
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a Gaussian https://github.com/neutronimaging/ToFImaging



Parametric study of LBPF and 3D-LSP @

Additive Manufactoring samples:

ADB
= Stainless Steel 316L vz

Different Laser Shock Peening (LSP):
= 2D LSP

= Buried (B) -
= 3D LSP (2D + B)

= As Built (AB)

AM Parameters: Strategy (Parallel/Chess), Density (Low/High), Supports (No/Yes)

LSP Parameters: Strategy (AB/B/2D/3D), Energy(1.0/1.5), Overlap(0.4%/0.8%)

Scanned with Bragg Edge Imaging at RADEN (J-PARC, JAPAN)




AM parameters @

LPBF Parameters: Strategy (Parallel/Chess), Density (Low/High), Supports (No/Yes)
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Busi, M., et al. Additive Manufacturing (2020)




LSP parameters

Main findings:

. 3D-LSP is able to push the
CRS deeper into the sample
compared to 2D-LSP

II. The best results are found
for 1.5J and 80% overlap

lll.  The overlap has higher influence
than the laser energy

Residual Stress (MPa)
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Questions?



