Nanoscale wood-water interactions studied with small-angle neutron scattering

<u>Paavo Penttilä</u>^a, Aleksi Zitting^a, Michael Altgen^a, Antti Paajanen^b, Ralf Schweins^c, Lauri Rautkari^a

^aAalto University, Department of Bioproducts and Biosystems, Espoo, Finland ^bVTT Technical Research Centre of Finland Ltd, Espoo, Finland ^cInstitut Laue-Langevin, Large-Scale Structures Group, Grenoble, France

ESS ILL User Meeting, Lund October 6, 2022

1. Wood structure and scattering

- 2. In situ SANS drying of wood
- 3. In situ SANS of water exchange in cell wall

Wood nanostructure and its role

- Hierarchical natural material
- Material properties closely related to cell wall structure
- New applications utilize the nanoscale building blocks of wood cell walls
- Water interactions important

Wood(-based) samples for scattering

- Hierarchical multicomponent systems
- Anisotropic, low degree of order
- Structural heterogeneity
- Sensitivity to environment (e.g. humidity)

Representative average in a single exposure, non-destructive sample preparation

Opportunities for in situ experiments

Small-angle scattering analysis of wood

WoodSAS model

Equatorial, anisotropic SANS intensity of pine wood in D₂O

Microfibrils according to WoodSAS

Diameter of microfibrils:

2.0 nm (D_2O), **2.3 nm** (H_2O) based on SANS

2.5 nm based on SAXS

18-chain cellulose crystal

Microfibril packing distance:

Wet: **3–4 nm**

Penttilä et al. (2020), Cellulose, 27:71-87

Penttilä et al. (2019), J. Appl. Crystallogr., 52:369-377

Penttilä et al. (2021). Cellulose. 28:11231-11245

Dry: 2-3 nm

Other references:

Jakob et al. (1996), *Macromol.*, 29:8435-8440 Fernandes et al. (2011), PNAS, 108:E1195-E1203 Plaza et al. (2016), Cellulose, 23:1593-1607

Microfibril bundles in WoodSAS model

Diameter of microfibril bundles

$$I(q) = AI_{cyl}(q,\bar{R},\Delta R,a,\Delta a) + Be^{-q^2/(2\sigma^2)} + Cq^{-\alpha}$$

$$\frac{\textit{Microfibrils}}{\textit{(hexagonally packed cylinders)}} + Cq^{-\alpha}$$

$$\frac{\textit{Microfibril bundles}}{\textit{(SANS)}} + Cq^{-\alpha}$$

$$\frac{\textit{Large pores/lumina}}{\textit{lumina}}$$

Bundle diameter =
$$\frac{2\sqrt{2}}{\sigma}$$

(assuming Guinier law and circular cross-section)

AFM
Mean bundle width
in spruce 18 nm

Fahlén & Salmén (2003), J. Mat. Sci., 38:119-126

0 nm

1. Wood structure and scattering

2. In situ SANS drying of wood

3. In situ SANS of water exchange in cell wall

SANS measurement of drying wood

- Time-resolved SANS experiment of D₂O-saturated wood drying in the neutron beam
- Data collected at sample-to-detector distance
 1.5 m with time resolution down to 5 min

D11/ILL

T = 24°C, RH = 26%

Microfibril bundles deswell with drying

- Microfibrils pack closer as water is removed from between them
- Molecular models reproduced deswelling and showed its implications on water diffusion

- 1. Wood structure and scattering
- 2. In situ SANS drying of wood

3. In situ SANS of water exchange in cell wall

Water accessibility studied with time-resolved SANS

Exposure time ≥30 s

Water accessibility studied with time-resolved SANS Fits with microfibril term of WoodSAS model

Equilibrated in 65% H₂O/35% D₂O

5 min after immersing in 100% D₂O

30 h after immersing in 100% D₂O

Aalto Universitv **School of Chemical** Engineering

Exchange of interfibrillar water

- All water exchanged within first ~30 min
- No clear difference in exchange rate of water "inside and outside of microfibril bundles"

Conclusions

Conclusions

- SANS provides powerful tools to characterize wood nanostructure and its interactions with moisture
- Water diffusion within the hierarchical cell wall structure was studied using in situ SANS

Thank you

Acknowledgements:

ILL experiments TEST-2747, INTER-378, DIR-175

Funding:

Contact: paavo.penttila@aalto.fi

@PaavoPenttila

EMIL AALTOSEN SÄÄTIÖ

Emil Aaltonen Foundation