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Introduction & Motivation 
Ø Grain orientation distribution, size and shape, among other microstructural features are directly connected to

macroscopic properties (mechanical, magnetic, etc.) of polycrystalline meterials.

Ø Detailed knowledge of the crystallographic grain network, not only on the surface but also in the bulk of
samples, is essential for tunning and manipulating macroscopic properties for applications.

Ø It is thus important to develop methods/tools that provide detailed information:
• 2D and 3D,

• Distructive and non-distructive,

• Optical light, electrons, X-rays, neutrons

Optical Microscopy SEM EBSD

Figures taken
from: 
https://www.mpie
.de/3093283/Tech
niques3DEBSD 

3D EBSD

Materials 
Science and 
Engineering: A, 
Vol. 524, (2009), 
Pp. 69-76

3DXRD
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Analyst, 2014, 139(22), 5765-5771.

Cold neutron
diffraction contrast

tomography

Scientific Reports, 2017, 7(1), 9561.

Time-of-Flight Three
Dimensional

Neutron Diffraction in 
Transmission Mode 
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Laue 3D neutron diffraction tomography

6D X-ray & neutron diffraction
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FALCON - E11 - HZB

• Not wavelength resolved ----> High Flux (also at continuous sources)

• Fast acquisition time (a few hours even minutes vs days)

• Use of simple Laue setup; easy to perform

Monochromatic
neutron beam with 3 

full rotations

White THERMAL 
neutron beam with a 

single rotation

+ Flux
+ Information

Comparison with Cold neutron diffraction contrast tomography:

Characteristics 
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Fe

Cu

NiTi

Back-scatter

Frw-scatter

FALCON - E11 - HZB
Tomographic Measurements

Characteristics 
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In a diffraction experiment the main equation that provides 
information is the Bragg equation:

2d·sinθ = nλ

In polychromatic case (λ1 < λ < λ2), the recorded data is integrated over the full 
wavelength range available and thus information is lost. 

2d·sinθ = nλ

Characteristics 
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How to solve the problem and find potential solutions ???

Use of a forward model !!

What is required?

• Sample information: lattice parameters and space group that will 
be used with Mantid to generate the samples hkl planes and the 
corresponding d-spacing (also the multiplicity and structure 
factors squared). 

• Possible grain orientations, originally input as Rodrigues vectors, r, 
and then transformed into orientation matrices, U, (total number 
of orientations are user defined but the values are confined by the 
fundamental zone of the crystal system).

• Possible grain position, originally assumed at (0,0,0) and refined 
later. 

• The omega range, detector parameters, and wavelength range.  

Characteristics 
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Original Development
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Grain Morphology Reconstruction
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Applications 

Materials & Design 196 (2020) 109118

A multiscale study of hot-extruded CoNiGa
ferromagnetic shape-memory alloys
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Applications 

Materials Today Advances 15 (2022) 1002582

Microstructural characterization through grain orientation mapping
with Laue three-dimensional neutron diffraction tomography
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Applications 
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Applications 

Experimental Theoretical
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Applications 
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Funding: SDSC 4th call “Robust and scalable Machine Learning algorithms for 
Laue 3-Dimensional Neutron Diffraction Tomography” (2021). 

Future @ PSI 
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6DXND: 6-Dimensional X-ray and Neutron diffraction
• Why 6D: 3D (direct space) + 3D (orientation space)
• Motivation: Grain-resolved → subgrain spatial resolution
• Potentially better spatial resolution than Laue 3DNDT, but requires more 

experimental information (wavelength)

Adapted from [S. Samothrakitis et al., Scientific Reports 10, 3724 (2020)]                                     From [Y. Hayashi et al., Science 366, 1492 (2019)]
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Similar experimental setup to Laue 3DNDT
• Sample fully illuminated by beam
• Collect diffraction images at different 

sample rotations ω
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High resolution orientation distribution function (HRODF)
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Detector

Sample

g

g: experimental scatter vector
h: theoretical (unrotated) scatter vector

Determine orientation q such that h maps onto g

Use quaternion formalism:

𝒒 = 𝒒𝟎; 𝒒 = (𝒄𝒐𝒔 𝜶
𝟐
; 𝒏 𝒔𝒊𝒏 𝜶

𝟐
)

Set of orientations is a sphere:

𝐪 = 𝒒𝟎𝟐 + |𝒒|𝟐 = 𝟏



6DXND: Mathematical formalism

Page 21

• Set of solutions can be represented as straight lines 
Ø Problem reduces to solving a set of linear equations
Ø Can be solved fast on gpus
Ø Orientation space is discretized, and possible 

solutions explored through raytracing
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Step 1: Compute diffraction
vectors

Step 2: Determine 
candidate orientations

Step 3: Completeness check
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Input: Binarized list of lit pixels per wavelength    

Output: List of orientations and completeness per voxel    
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6DXND advantages:
• Sub-grain level spatial resolution
• Spot overlap not issue
• Fast – Simulations shown take ~3 h on single graphic 

card (rtx 2060) ~15 min on small cluster

To be done:
• Robustness tests and further developed visualization 

tools

0.1 deg step:                          5 deg step:



Acknowledgments

Page 25

S. Schmidt    R. Woracek M. Strobl   E. Polatidis J. Capek  M. Raventos

M. TovarT. Kacprzak



Wir schaffen Wissen – heute für morgen

Thank you!
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