

Acknowledgements

Monochromatic VS TOF

TOF form factor expression

Experiments and data treatment

Results

Collaborators

- Prof. Elizabeth Blackburn
- Prof. Edward M. Forgan
- HZB. Dr. Maciej Bartkowiak
- HZB.....Dr. Oleksandr Prokhnenko
- HZB....Dr. Peter Smeibidl

- Br. Lingjia Shen, Ahmed Alshemi
- Dr. Alistair Cameron, Dr. Randeep Riyat, Dr. Erik Jellyman
- Prof. Hazuki Kawano-Furukawa
- Dr. Jonathan S. White
- Dr. Robert Cubitt
- Dr. Alexander Holmes

Research institutions

Overview

Monochromatic VS TOF

TOF form factor expressio

Experiments and data treatment

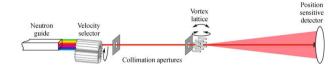
Results

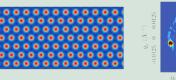
- 1 Monochromatic VS TOF
- 2 TOF form factor expression
- 3 Experiments and data treatment

4 Results

Small Angle Neutron Scattering (SANS)

Monochromatic VS TOF




Figure: Schematic diagram of a typical SANS setup. M. R. Eskildsen, et al., Front. Phys., 6(4), 398-409 (2011).

- Neutron magnetic moments interact with the VL.
- Resolve structures with $d \sim 100 300$ nm.

Real space

 $q = 4\pi \sin \theta / \lambda$

Reciprocal space

$$d = \lambda/2\sin\theta$$

Bragg diffraction in monochromatic SANS

Monochromatic VS TOF

FOF form factor expression

Experiments and data

Results

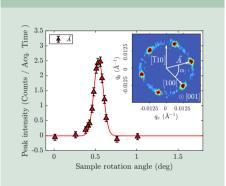


Figure: Rocking curve in ω at 130 mK and 1.5 T for the reflection labelled \vec{A} in the inset for CeCu₂Si₂.

E. Campillo, et al., Phys. Rev. B, 104, 184508 (2021).

Field as a Fourier series

$$B(\mathbf{r}) = \sum_{hk} \underbrace{|FF(\mathbf{q}_{hk})|}_{\mathsf{Form Factor}} e^{i\mathbf{q}_{hk} \cdot .\mathbf{r}}$$

Christen Formula

$$I(\mathbf{q}_{hk}) = 2\pi V \phi_n \left(\frac{\gamma}{4}\right)^2 \frac{\lambda_n^2}{\Phi_0^2 q_{hk} \cos(\zeta)} |FF(\mathbf{q}_{hk})|^2.$$

Bragg diffraction in monochromatic SANS

Monochromatic VS TOF

FOF form factor expression

Experiments and data

Results

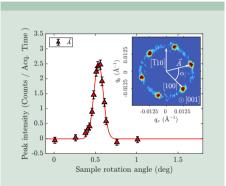


Figure: Rocking curve in ω at 130 mK and 1.5 T for the reflection labelled \overrightarrow{A} in the inset for CeCu₂Si₂.

E. Campillo, et al., Phys. Rev. B, 104, 184508 (2021).

Field as a Fourier series

$$B(\mathbf{r}) = \sum_{hk} \underbrace{|FF(\mathbf{q}_{hk})|}_{\text{Form Factor}} e^{i\mathbf{q}_{hk} \cdot .\mathbf{r}}$$

Christen Formula

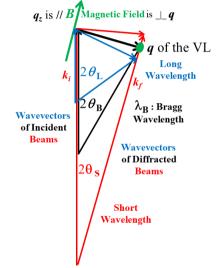
$$I(\mathbf{q}_{hk}) = 2\pi V \phi_n \left(\frac{\gamma}{4}\right)^2 \frac{\lambda_n^2}{\Phi_0^2 q_{hk} \cos(\zeta)} |FF(\mathbf{q}_{hk})|^2.$$

From $|FF(\mathbf{q}_{hk})|$

$$F_{\text{London}}(B) = \frac{B}{1 + q^2 \lambda^2} \exp(-cq^2 \xi^2)$$

Bragg diffraction in TOF SANS

Monochromatic VS TOF


FOF form factor expression

Experiments and data

Results

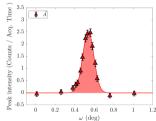
At one magnet angle α :

- lacksquare Different wavelengths λ are scattered.
- Each α gives a range of q_z .
- Signal at Shorter and Longer λ = Signal at different ω .

E. Campillo, et al., J. Appl. Cryst., 55, 1314-1323 (2022).

Vortex lattice form factor

Monochromatic VS TOI


TOF form factor expression

Experiments and data

Results

Starting from the Christen formula

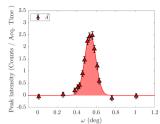
$$|F(\mathbf{q})|^2 = \frac{\Phi_0^2}{2\pi V(\frac{\gamma}{4})^2} \times \frac{q I(\mathbf{q})}{\phi \lambda^2},$$

we define the integrated intensity under a rocking curve as:

$$\frac{qI(\mathbf{q})}{\phi\lambda^2} = \frac{1}{\phi\lambda^2} \int \sum_{q_x,q_y} I(q_x,q_y,\omega) \, q \, d\omega.$$

Monochromatic VS TOF

TOF form factor expression


Experiments and data

Results

Vortex lattice form factor

Starting from the Christen formula

$$|F(\mathbf{q})|^2 = \frac{\Phi_0^2}{2\pi V \left(\frac{\gamma}{4}\right)^2} \times \frac{q \, I(\mathbf{q})}{\phi \, \lambda^2},$$

we define the integrated intensity under a rocking curve as:

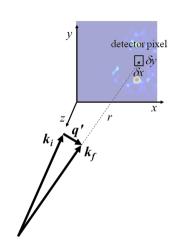
$$\frac{ql(\mathbf{q})}{\phi \lambda^2} = \frac{1}{\phi \lambda^2} \int \sum_{q_y,q_y} l(q_x, q_y, \omega) \, q \, d\omega.$$

In the TOF case:

- Illuminating beam: $\phi_i = \phi(\lambda_i)\Delta\lambda$.
- Scattered intensity: $I_i = I(q_x, q_y, q_z, \lambda_i) \Delta \lambda$.
- NOTE: $\Delta \lambda$ cancels in the ratio I_i/ϕ_i .

Geometry of the scattering

TOF form factor expression


UNIVERSITY

In the laboratory frame $\mathbf{q}' = \mathbf{k}_f - \mathbf{k}_i$, with magnitude k_i :

$$\mathbf{q'} = \left(k_j \frac{x}{r}, \ k_j \frac{y}{r}, \ \frac{k_j}{2} \left[\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 \right] \right).$$

In the sample frame, for small sample/magnet rotations:

$$\mathbf{q} = \left(k_j \frac{x}{r}, \ k_j \frac{y}{r}, \ q'_z - k_j \frac{x}{r} \sin \alpha\right).$$

F. Campillo, et al., J. Appl. Cryst. 55, 1314-1323 (2022).

TOF form factor

Monochromatic VS TOF

TOF form factor expression

Experiments and data treatment

Results

Differentiating, the relationship between pixel-space and **q**-space:

$$\frac{dq_x}{dx} = \frac{dq_y}{dy} = \frac{k_j}{r}$$

and for detector area $\Delta x \Delta y$ and the **q**-pixel $\Delta q_x \Delta q_y$:

$$\Delta x \Delta y = \Delta q_x \Delta q_y \times \frac{r^2}{k_j^2}.$$

TOF version of the formula for the form factor:

$$|F(\mathbf{q})|^2 = \frac{\Phi_0^2}{2\pi V\left(\frac{\gamma}{4}\right)^2} \times \frac{1}{\lambda^2} \times \underbrace{\frac{\Delta q_x \Delta q_y r^2}{\kappa_j^2 \delta x \delta y}}_{\text{N detector pixels}} \times \int \sum_j \frac{I_j(\Delta q_x, \Delta q_y, q_z)}{\phi_j} dq_z.$$

TOF form factor

Monochromatic VS TOP

TOF form factor expression

Experiments and data

Results

Differentiating, the relationship between pixel-space and **q**-space:

$$\frac{dq_x}{dx} = \frac{dq_y}{dy} = \frac{k_j}{r}$$

and for detector pixel $\Delta x \Delta y$, the **q**-pixel is $\Delta q_x \Delta q_y$:

$$\Delta x \Delta y = \Delta q_x \Delta q_y \times \frac{r^2}{k_i^2}.$$

TOF version of the formula for the form factor

$$|F(\mathbf{q})|^2 = \frac{\Phi_0^2}{2\pi V\!\left(\frac{\gamma}{4}\right)^2} \times \frac{\Delta q_{_{\! X}} \Delta q_{_{\! Y}}}{4\pi^2} \times \frac{r^2}{\delta x \delta y} \times \int \sum_j \frac{I_{_{\!\! j}}\!\left(\Delta q_{_{\! X}}, \Delta q_{_{\!\! y}}, q_{_{\!\! Z}}\right)}{\phi_j} dq_{_{\!\! Z}}.$$

Experiment chronology

Monochromatic VS TOF

Experiments and data treatment

Three different experiments were performed at HFM/EXED:

January 2016:

High-field dependence measurements on YBCO.

 $\lambda = 2.55 \,\text{Å} \text{ to } 8.15 \,\text{Å}$

Experiment chronology

Monochromatic VS TOF

TOF form factor expression

Experiments and data treatment

Result

Three different experiments were performed at HFM/EXED:

January 2016:

High-field dependence measurements on YBCO.

 $\lambda = 2.55 \text{ Å to } 8.15 \text{ Å}.$

Change of the detector.

Experiment chronology

Monochromatic VS TOF

TOF form factor expression

Experiments and data treatment

Results

Three different experiments were performed at HFM/EXED:

January 2016:

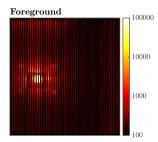
High-field dependence measurements on YBCO.

 $\lambda = 2.55 \text{ Å to } 8.15 \text{ Å}.$

- Change of the detector.
- July 2017:
 - Temperature dependence measurements on YBCO.
 - Field and temperature dependence on BKFA.
- December 2019:

High-field dependence measurements on 15% Ca-doped YBCO.

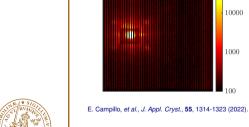
 $\lambda = 5.0 \text{ Å to } 8.15 \text{ Å}.$

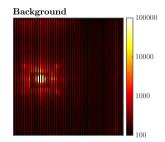

Monochromatic VS TOF

TOF form factor expression

Experiments and data treatment

Results

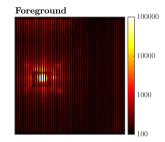



E. Campillo, et al., J. Appl. Cryst., 55, 1314-1323 (2022).

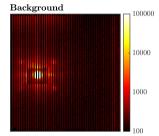
Foreground

Monochromatic VS TOF

Experiments and data treatment



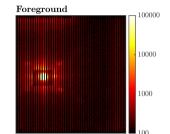
100000



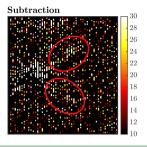
Monochromatic VS TOF

Experiments and data treatment

Subtraction




Monochromatic VS TOF


TOF form factor expression

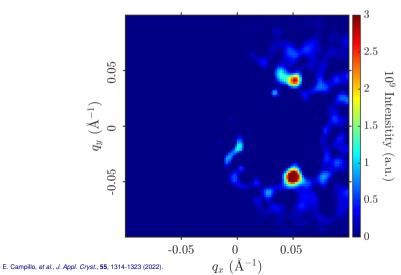
Experiments and data treatment

Results

Procedure:

- Load FG and BG files.
- Rebin from time bins to $\Delta \lambda$ bins.
- Divide FG and BG files by efficiency.

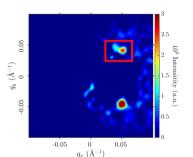
- Rebin from detector pixels to **q**-space.
- Normalise FG and BG by beam I.
- Subtract BG from FG.


Monochromatic VS TOF

TOF form factor expression

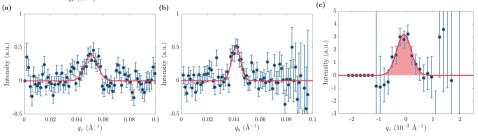
Experiments and data treatment

Results


Monochromatic VS TOF

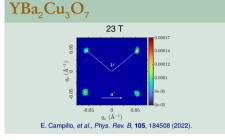
TOF form factor expressior

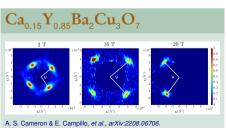
Experiments and data treatment

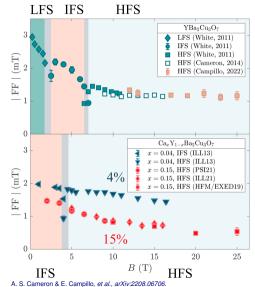

Results

General considerations

- Choosing a range of λ .
- α determines the q-area covered: two or three angles needed.
- q_z width relevant: uninvestigated sample requires several angles.


Form factor on YBCO and Ca-YBCO


Monochromatic VS TOF


OF form factor expression

Experiments and data

Results

Emma Campillo Muñoz

Analysis of time-of-flight SANS data on mesoscopic crystals such as flux line lattices

7th October 2022 22/24

Final remarks

Monochromatic VS TO

TOF form factor expressio

Experiments and data treatment

Results

- We developed a TOF Christen formula.
- We established an analysis procedure (developed in Mantid).
- We formulated general considerations for TOF experiments.
- We analysed unexplored data measured on YBCO and Ca-doped YBCO up to 25 T.
- Important contribution for future research at ESS.
- TOF can be used to study VL of superconductors.

