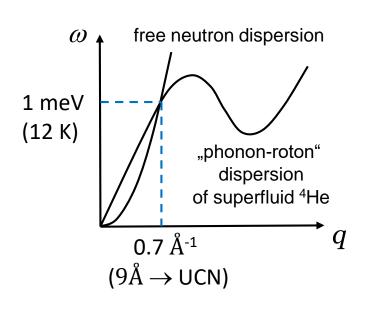
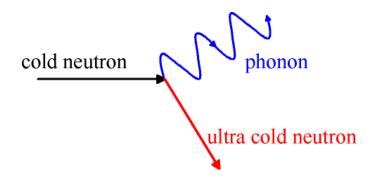
Superfluid-helium UCN sources: "in-beam" versus "in-pile"

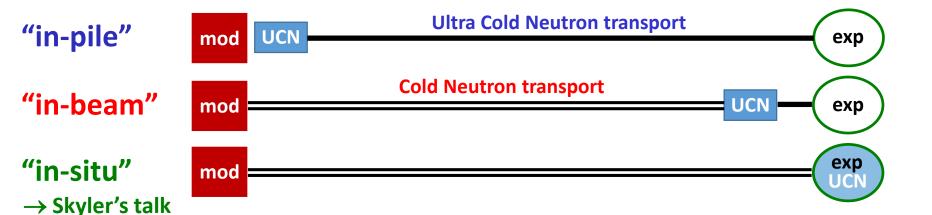



Contents

- 1. Basic facts
- 2. Comparison of "in-pile" / "in-beam"
- 3. Examples for both types of sources
- 4. What might be achievable "in-beam" at ESS?

UCN production in superfluid He

Golub & Pendlebury, PL 53A (1975) 133

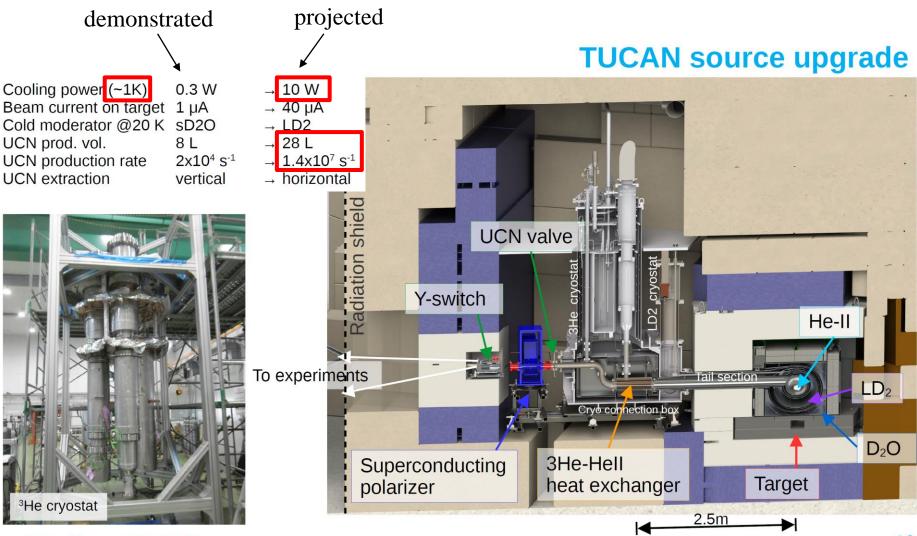

with only au_{R} and au_{up} :

	$\sigma_{\rm capture}$ (4He) = 0
cold neutrons	
	converter
saturated UCN density: ρ =	$=\dot{\boldsymbol{\rho}}\boldsymbol{\tau}$
p -	- P ^t

 $\tau^{-1} = \tau^{-1}_{\beta} + \tau^{-1}_{up} + \tau^{-1}_{abs} + \tau^{-1}_{wall}$

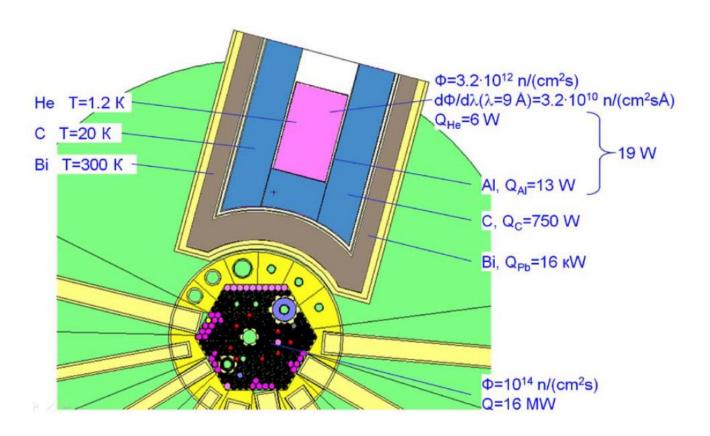
<i>T</i> [K]	$ au_{\sf max}\left[{\sf s} ight]$
1.2	30
1	100
0.8	310
0.7	510
0.6	710
0	880

 $\rightarrow \tau$ close to $\tau_{\rm g}$ for T < 0.6 K + low wall loss



- Cold-Neutron solid angle: <u>small / large</u> (defines type of UCN source)
 - → lower / higher UCN production rate and flux
 - → high-density, "accumulation" / high-flux, "current" -type source
- Radiation levels: low / high → heat load on converter
 - → lower / higher cooling power required
 - \rightarrow < 0.6 K / > 1 K attainable
 - → maximum / reduced saturated UCN density
 - → free / limited choice of UCN reflectors
- Distance of experiment from source: <u>identical / close / far away</u>
 - → **no** / lower / higher UCN transport losses
 - → **no** / smaller / larger dilution of UCN density from source to experiment
- Access for troubleshooting: <u>easy / difficult</u>
 - → better / worse duty cycle
 - → straightforward / difficult source optimization

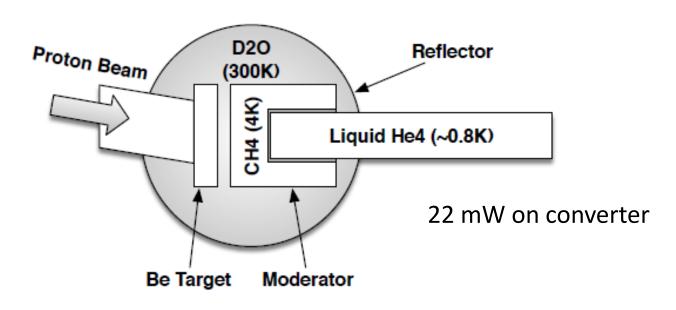
TUCAN spallation source based He-II UCN source


(building on work by Masuda et al.)

@ TRIUMF

10

In-pile source project for WWR-M reactor in Gatchina


Simulated performances: → Anatoly's talk

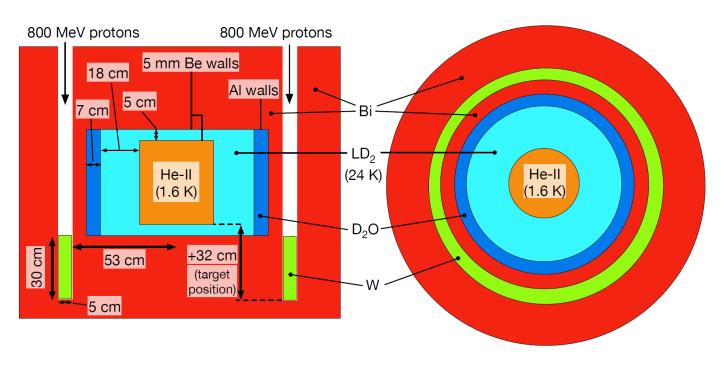
$$\dot{
ho} = 2.9 \times 10^3 \; \mathrm{s^{-1} cm^{-3}}$$
 $\dot{
ho}V = 10^8 \; \mathrm{s^{-1}}$ [SuperSUN: $1.6 \times 10^5 \; \mathrm{s^{-1}}$]
 $\rho = 5.8 \times 10^4 \; \mathrm{cm^{-3}}$ [1.7 × 10³ cm⁻³ polarised]

Ultracold Neutron Production at Compact Neutron Sources

Yun Chang Shin,^{1,*} W. Michael Snow,^{2,3} David V. Baxter,^{2,3} Chen-Yu Liu,^{2,3} Dongok Kim,^{1,4} Younggeun Kim,^{1,4} and Yannis K. Semertzidis^{1,4}

arXiv:1810.08722v3 (October 2018)

<u>Simulated performances:</u>


 $\dot{\rho}=56~{\rm s^{-1}cm^{-3}}$ in 1.35 litres He, with methane pre-moderator, $80~{\rm s^{-1}cm^{-3}}$ with methane hydrate clathrate

$$\tau = 50 \text{ s} \rightarrow \rho = 4000 \text{ cm}^{-3}, \ \rho V = 5 \times 10^6$$

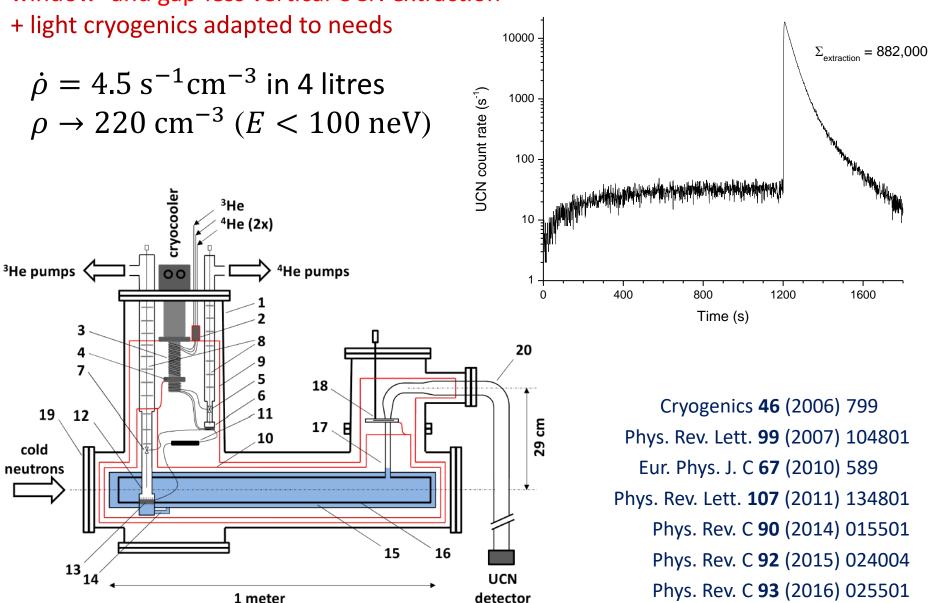
A next-generation inverse-geometry spallation-driven ultracold neutron source

K.K.H. Leung, 1,2,a G. Muhrer, 3,4,b T. Hügle, 4,5 T.M. Ito, 4 E.M. Lutz, 1,2 M. Makela, 4 C.L. Morris, 4 R.W. Pattie, Jr., 4,6 A. Saunders, 4 and A.R. Young 1,2,c

arXiv:1905.09459 (October 2019)

100 W on converter

<u>Simulated performances:</u> → **Kent's talk**

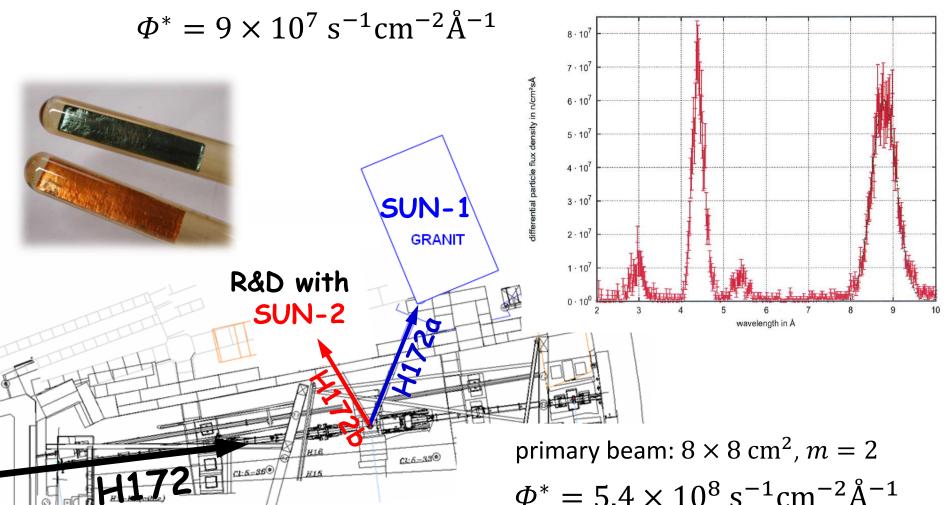

$$\dot{\rho} = 5 \times 10^4 \text{ s}^{-1} \text{cm}^{-3} \text{ in 40 litres He-II}$$

UCN flux extracted through 5-m long Ø18 cm guide: $5 \times 10^8 \ \mathrm{s^{-1}}$

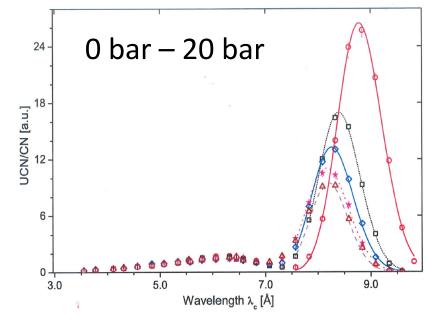
 $ho
ightarrow 10^4 \ {
m cm^{-3}}$ in large external trap

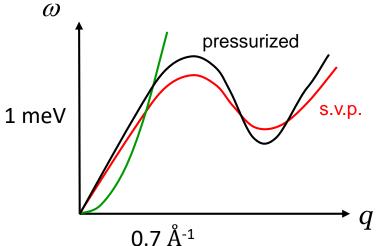
He-II UCN source development (TUM & ILL, 2004+)

window- and gap-less vertical UCN extraction



He-II UCN source prototypes SUN-1&2 @ ILL

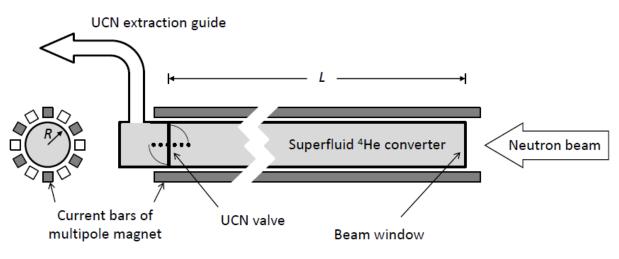

H172a and H172b secondary 9Å beams:


Bragg reflection off stage-I /-II intercalated graphite

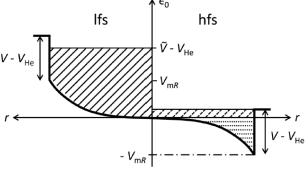
UCN production in pressurized He-II, using SUN-1 @ PF1B

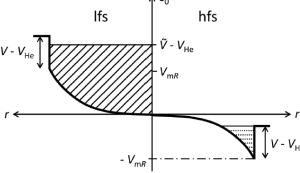
Schmidt-Wellenburg et al., PRC **92** (2015) 024004

from left to right:
Philipp Schmidt-Wellenburg
Amel Rahli, Torsten Soldner,
Kent Leung



ILL project SuperSUN → Estelle's talk





- Single-user facility (PanEDM)
- magnetic multipole reflector:
 - → strongly reduced wall losses
 - \rightarrow fully polarised UCN

Phys. Rev. C 92 (2015) 015501

Projected performances:

$$\dot{\rho} = 13.5 \text{ s}^{-1} \text{cm}^{-3} \text{ in 12 litres He-II,} \quad \dot{\rho}V = 1.6 \times 10^5 \text{ s}^{-1}$$

 $\rho = 330 \ \mathrm{cm}^{-3}$ (phase I, without magnet, fomblin spectrum)

 1700 cm^{-3} (phase II, with magnet, polarised, E < 230 neV)

Test of 4 m, Ø-50 NiMo coated glass guide for PanEDM at SUN-2

Transmission: 85 % for spectrum with E < 100 neV

Hanno Filter et al.

Long-guide (> 10 m) transmission previously validated by

TUM group → Andreas' talk
PSI group → Bernhard's talk

→ No show stopper for in-pile type sources

but don't forget guide volume in accumulation-type UCN sources

Properties of planned ESS liquid-D2 moderator (Luca Zanini):

Moderator brilliance
$$\frac{d\Phi}{d\lambda d\Omega}$$
 at 9Å:

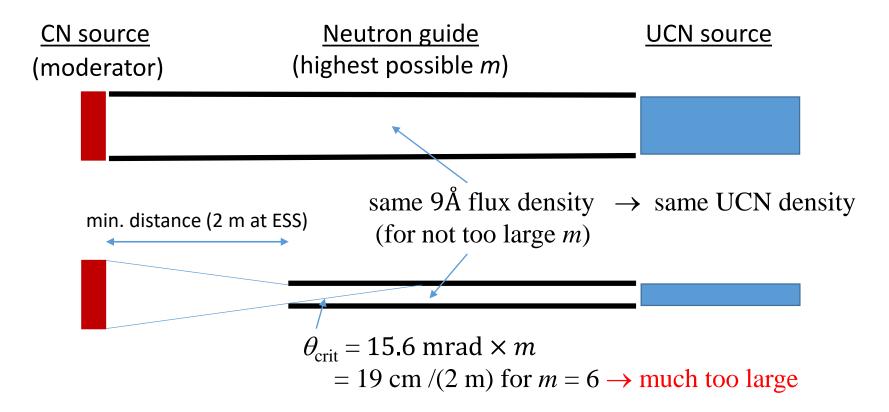
$$3.4 \times 10^{11} \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1} \text{Å}^{-1}$$
 (time average at 5 MW)

Usable moderator surface: $24_{\text{vertical}} \times 40_{\text{horizontal}} \text{ cm}^2$

Beam extraction with mirrors:

Critical angle for natural nickel (m = 1):

1.73 mrad/Å
$$\leftrightarrow$$
 15.6 mrad/(9Å)
 $\leftrightarrow \Omega = \pi \theta_c^2 = 7.65 \times 10^{-4} \text{ sr}$


UCN production rate density (Be-coated converter, $E \le 233$ neV), due to moderator brilliance at 9Å within Ω :

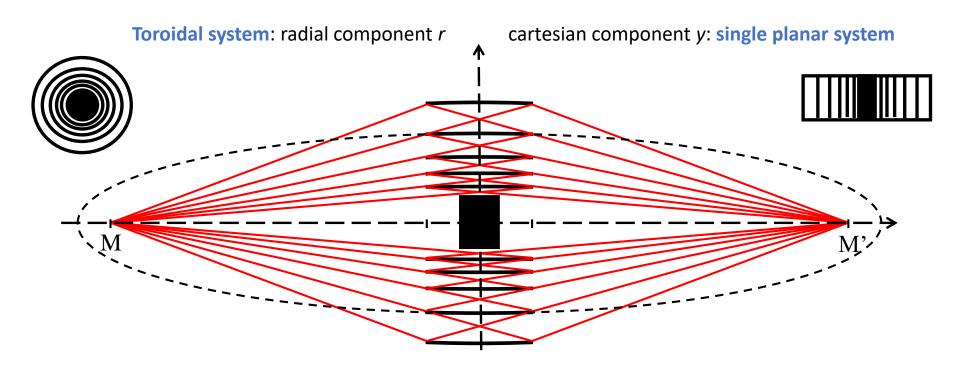
$$\left[\dot{\rho} \approx 12.9 \text{ s}^{-1} \text{cm}^{-3} \times m^2\right]$$

$$\dot{
ho} pprox 4.97(38) imes 10^{-8} \, \mathrm{Åcm^{-1}} \, \frac{d\Phi}{d\lambda} \bigg|_{9 \mathrm{\mathring{A}}}$$
 Schmidt-Wellenburg et al., NIM A 611, 259 (2009)

Neutron guide for CN delivery to the UCN source?

For <u>highest UCN</u> density, we need to fill the beam phase space of a guide:

Problems:

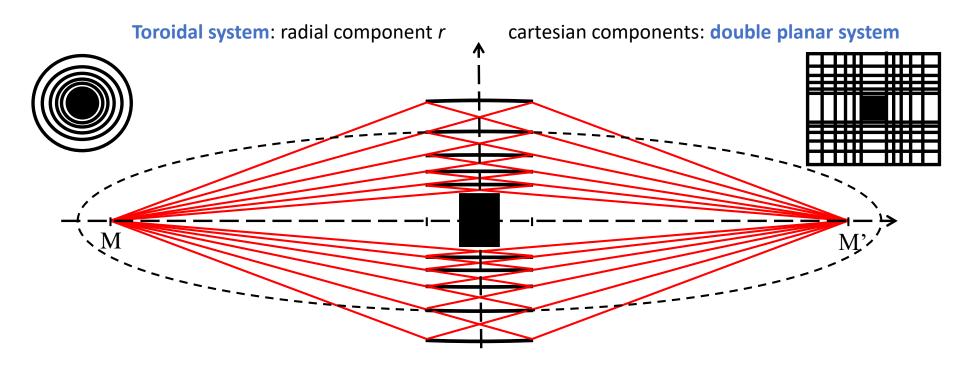

- large m-values (as needed) \rightarrow guide illumination losses
- narrower guide and UCN source → lower total UCN production
- increased CN transport losses → lower UCN density

Challenge for an in-beam UCN source at ESS:

- Need a neutron delivery system with high brilliance transfer from moderator to UCN source, with largest technically possible solid angle (m^2)
- A neutron guide (even a fancy one) is sub-optimal due to the problem of illumination losses, unless it can be approached sufficiently close to the moderator (much closer than 2 m)
- Neutron imaging from the moderator to the UCN source seems a viable solution

Multi-mirror imaging optics for low-loss transport of divergent neutron beams and tailored wavelength spectra

arXiv:1611.07353


Device based on single reflections with well-defined kinematics

- → able to fill large solid angle even from a small source
- → opportunities for neutron scattering instruments, see:

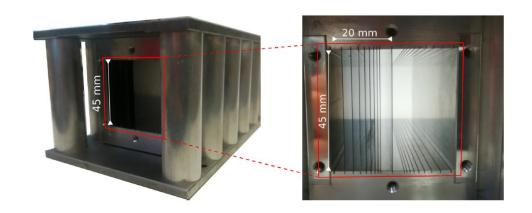
J. Neutron Research 20 (2018) 91

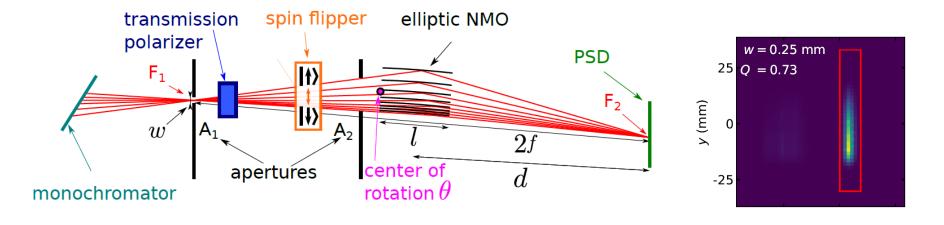
Multi-mirror imaging optics for low-loss transport of divergent neutron beams and tailored wavelength spectra

arXiv:1611.07353

Device based on single reflections with well-defined kinematics

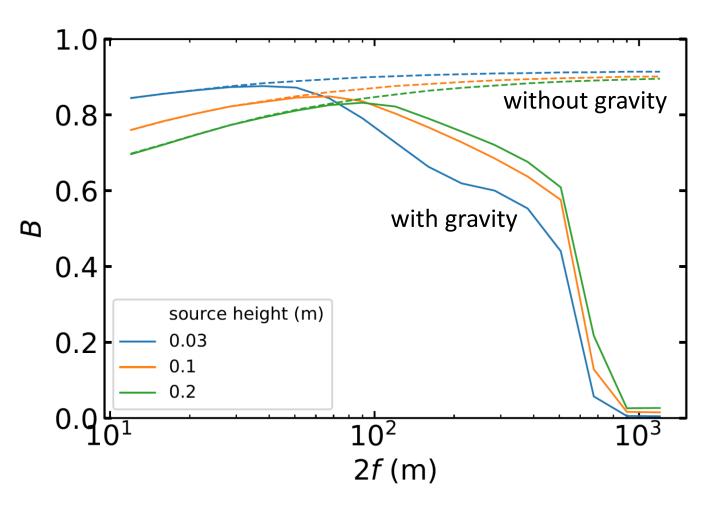
- → able to fill large solid angle even from small source
- → opportunities for neutron scattering instruments, see:


J. Neutron Research 20 (2018) 91

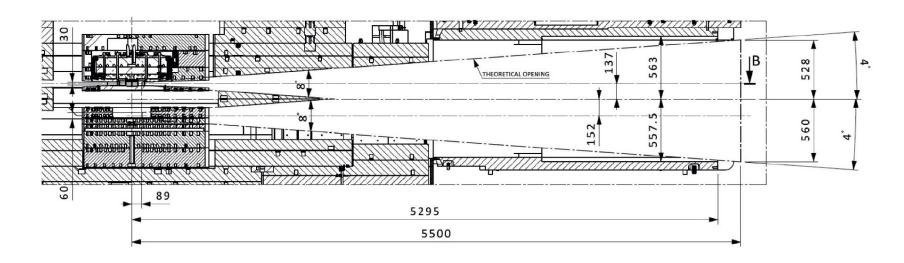

Experimental demonstration (look at arXiv in a few days from now)

Nested mirror optics for neutron extraction, transport, and focusing

Christoph Herb^{a,*}, Oliver Zimmer^b, Robert Georgii^{a,c}, Peter Böni^a


^aPhysics Department E21, Technical University of Munich, D-85748 Garching, Germany
^bInstitut Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble, France
^cHeinz Maier-Leibnitz Zentrum, Technische Universität München, DE-85748 Garching, Germany

Integrated brilliance transfer by single planar elliptic NMO


- m = 6 supermirrors with 72 % edge reflectivity
- NMO scaled to full m=6 acceptance for each distance 2f

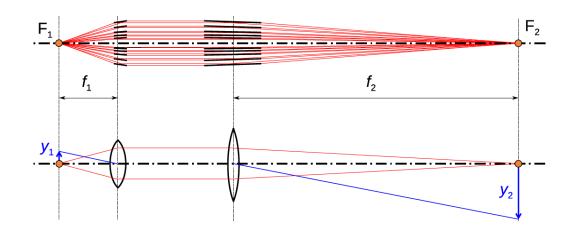
McStas simulation by Christoph Herb

Implementation at ESS?

Solid angle for NMO with m=6 supermirrors seems available in large beam port for nnbar project:

$$\dot{\rho} \approx 12.9 \text{ s}^{-1} \text{cm}^{-3} \times m^2 \times B^2$$

Assumptions for conclusions:


- imaging neutron transport from a moderator area of $20 \times 20 \text{ cm}^2$
- double planar NMO with m = 6 supermirrors, $B^2 = 50 \%$

Conclusions:

Typical source volume: V = 120 litres (for 3 m long source, remember 17 m mean free path for 9Å neutrons)

Further opportunities

- Large source → more (or stronger) poles for magnetic reflector possible
- Viewing a VCN moderator might further increase available 9Å flux
- NMOs enable beam phase space transformations:
 - less divergent beam, e.g., for multi-chamber EDM project
 - more divergent beam for UCN density increase in smaller volume

