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WHAT DO WE AIM AT PROBING ?

rohée
Laboratoire Léon Brillouin

What science ?
B Radio-tomography of microscopic structures (10pum - 200um)
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SOURCES OF NEUTRON IMAGING CONTRAST

Most of the time incoherent scattering from hydrogenated materials
Diffraction contrast - Bragg edge imaging

SANS scattering — Refraction effects

More exotic = magnetic contrast

Rarely absorption contrast : Lithium — Boron — Gadolinium
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silica |melt

C22 ABSORPTION CONTRAST

B Lithium in batteries
B Boron in metallic nuclear materials (good homogeneity)
B Gadolinium or Hafnium as a marker

Brass in silica melt

Absorption contrast scales as A - VCN are a priori better
| One may study thinner samples

But the absorption increases also for the surrounding materials

B For some « fixed geometry » 6
problems, long wavelengths e Lambda
may be unsuitable ’ e Lambda * 3

- the « sample » is not sufficiently
transparent anymore
== BOron in metallic nuclear elements

== Lithium in batteries
== Melts (geophysics)
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BRAGG EDGE IMAGING

Bragg edge imaging relies on the diffraction
on crystallites in the studied material (Fe, Ni, Cu, Al

Attenuation coefficient, [cm"]
o

B Wavelengths are scattered only up to 4.2A° (in 3d metals)
B Useful wavelength range { 2A° - 5A° } 394
= typical cold neutron spectrum
B |tis possible to take advantage of
the pulsed structure of ESS
== |he Bragg edge information is obtained « for free »

Wavelength [, 41A

== ESS especially suited for such studies Courtesy of Prof. D. Penumadu, UTK
and N. Kardjilov, HZB
B Colder neutrons are a handicap Maxwell Spectra at 300K, 50K, 20K and 5K
9 60000

Region of —* 300K 50K —@— 20K —8—5K
50000 :
Interest

B Upside, no need to care about
the pulse time structure anymore ©
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INCOHERENT SCATTERING

Incoherent scattering from hydrogen is one of the most widely

used contrast in neutron radiography experiments
m Liquids in porous medium (rocks, concrete, fuel cells, roots, food ...)

Incoherent scattering (on H) is a strong effect in neutron cross

section J0000
Water (hydrogen)

1000 ——Total

But it is a complex process

m Most often it is a multiple scattering process
m It leads to inelasticity
m The wavelength dependance is non trivial

—— Absorption

100

Cross section (barn)

N
[ o
o
o
=
©
-
i

10 100 1000 10000

E (meV)

| PAGE 7



Absoprtion (linear)

Absorption (linear)

ABSORPTION OF WATER VS E,
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Very cold neutrons are useful for
very small contrasts



PHASE CONTRAST IMAGING

(FOR THE SAKE OF COMPLETENESS)

SANS and refraction as a source of contrast

Neutron grating interferometry is probably easier to implement

Neutron grating interferometer
B Phase gratings and absorption

gratings are easier to build
for long wavelengths

B SANS and refraction effects are
higher for long wavelengths
—> better contrast expected

Tobias Neuwirth (MLZ)
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INSTRUMENTAL GAINS

The detection efficiency increases as ~A (actually 1- e#)
providing a direct efficiency gain
B The gain is higher if it avoids using Gadox
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OPTICS FOR RADIOGRAPHY

Currently = neutron radiography uses a pin-hole geometry
Pin-hole Very « crude » setup

4 |
_ sample detector
Quasi parallel beam

\ <« Limiting distance (penumbra)

B Spatial resolution proportionnal to L/D
B Sample — detector distance is a strongly limiting factor
== Sample environment very challenging at high resolutions (< few 10um)

Using proper optics could significanly enhance the performances

B Neutron optics is challenging

B Inefficient + costly
B Reflective optics efficiency scales as A (the total reflection angles is prop. to 1)

B For imaging, high quality 2D optics is required



WOLTER OPTICS PROPOSAL

(M. ABIR ET AL , J OF IMAGING 2020, MIT - NIST)

More classical optical setup

Detector

Objective | |

Condenser

Feed guide

challenge

. ‘ Neutron use / collection
Working distance (x10 — 100)

Guide to condenser No need to minimize it
distance

Optics solid angle scales as 2?2
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CONCLUSION

Longer wavelengths would provide

o a increased sensitivity, prop. A or In(A)
o a better detection efficiency, prop. A

Bragg edge imaging is no more possible if spectrum beyond cold

neutrons
o no use left for pulsed beam structure

Phase contrast imaging becomes more efficient

Advanced optics is more efficient
m Wolter optics still needs to be demonstrated in « production »

Optimistic view
m Wolter optics + detection efficiency scales as A3+ gain in contrast
m Beware of gravity !

VCN are worth the effort (though not suitable for all problems)



