Growing solid deuterium crystal for Ultra Cold Neutron production

Ekaterina Korobkina

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - several steps condensation
 - temperature dependence of crystal shapes and quality
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

saturation density of Neutrons in the source $N = P \tau$

Liquid D2, T_{source} ~ T_n

$$L_{abs} = 25 \text{ m} >> L_{source}$$

$$L_{abs} \sim cm \leq L_{source}$$

UCN density in experiment $N = P \times \tau \times T$

Transmission T= T_{Bulk} x T_{top}

elastic scattering is an important factor affecting both, UCN travel in the bulk and UCN extraction to the vacuum through the top of the crystal

Properties of solid deuterium crystal

- SD2 is a quantum molecular crystal with weak intermolecular interaction, hcp or/and fcc structure
- strongly temperature dependent thermal activated diffusion above 9K
- strongly temperature dependent anisotropic linear expansion coefficient above 10K
- triple-point-wetting

 strongly temperature dependent thermal activated diffusion

Time between jumps $\tau = \tau_0 \exp(E/k_B/T)$

where diffusion activation energy $E/k_B=290K$; $\tau_0=9.4\times10^{-14}\,s$

Diffusion constant $D=D_0 \exp(-E/k_B/T)$

where $D_0 = R^2/6\tau_0$ for a random walk step R; for sD2 $D_0 = 2.3 \times 10^{-3}$ cm²/s

- SD2 is a quantum molecular crystal with weak intermolecular interaction, hcp or fcc structure
- strongly temperature dependent thermal activated diffusion above
 9K
- strongly temperature dependent molar volume and linear expansion
- triple-point-wetting

Fig. 3. The thermal expansion of o-D₂ as a function of temperature at zero pressure and 246 bar. Solid line: Nielson³⁵; dashed lines from our EOS, given in the Appendix; dotted lines: Esel'son *et al.*³³; squares: Krupskii *et al.*³⁴

Journal of Low Temperature Physics, Vol. 54, Nos. 3/4, 1984

Sov. J. Low Temp. Phys. 10(1), January 1984

- SD2 is a quantum molecular crystal with weak intermolecular interaction, hcp or fcc structure
- strongly temperature dependent thermal activated diffusion above 10K
- strongly temperature dependent lattice constant above 10K
- triple-point-wetting

Figure 7. Wetting curves of D₂ on Au are shown. A similar behaviour has been observed for other kinds of adsorbates. In the inset, the same curves are plotted on a logarithmic scale.

- SD2 is a quantum molecular crystal with weak intermolecular interaction, hcp or fcc structure
- strongly temperature dependent lattice constant above 10K
- strongly temperature dependent thermal activated diffusion above 10K
- triple-point-wetting

Figure 7. Wetting curves of D_2 on Au are shown. A similar behaviour has been observed for other kinds of adsorbates. In the inset, the same curves are plotted on a logarithmic scale.

- SD2 is a quantum molecular crystal with weak intermolecular interaction, hcp or fcc structure
- strongly temperature dependent lattice constant above 10K
- strongly temperature dependent thermal activated diffusion above 10K
- triple-point-wetting

Figure 7. Wetting curves of D_2 on Au are shown. A similar behaviour has been observed for other kinds of adsorbates. In the inset, the same curves are plotted on a logarithmic scale.

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - several steps condensation
 - temperature dependence of crystal shapes and quality
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

Growing cm size perfect deuterium crystals

small vs UCN source deuterium crystals

small vs UCN source deuterium crystals

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low T range
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate Trange (below and above 10K)
 - crystal shapes
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

Engineering PULSTART source design

SD2 growing tests: instrumentation details

SD2 monitoring system for visual control

 Graham Medlin designed and implemented a monitoring system which allows to observe D2container by using camera outside cryostat

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low T range
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate Trange (below and above 10K)
 - crystal shapes
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

 this run was to simulated Mainz UCN source condensation of SD2 with cold (6K) bottom of container and slow D2 flow rate

• this run was to simulated Mainz UCN source condensation of SD2 with cold (6K) bottom of container and slow D2 flow rate

- this run was to simulated Mainz UCN source condensation of SD2 with cold (6K) bottom of container and slow D2 flow rate
- Small flow (0.3 l/m)
 produced dense
 multicrystall, optically
 opaque

 Higher D2 flow >1 I/m produced snow-flakelike mass

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low T range
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate Trange (below and above 10K)
 - crystal shapes
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

condensation at 9/17.5/17.5, D2 flow 0.8 I/m

condensation at 9/17.5/17.5, D2 flow 0.8 I/m

shapes

• Mar 15-16-18, evolution to blob at 11.5K

Shapes

 Mar 15-16, evolution to blob at 11.5K

Mar 16 condensation, with heaters on, 8.5/18/ 15K, 1 l/m

Shapes

- Mar 17-18, evolution to blob at 11.5K
- tendency for avoiding warmer surfaces

Shape reconstruction

Mar 15, Annealed overnight at 12K. High mobility

condensation at 9/17.5/17.5, D2 flow 0.8 l/m

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low T range
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate T range (below and above 10K)
 - crystal shapes
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

Condensation at 8.3/ 16.2/ 13, 0.8 l/m

April 11 simulation, D2 flow on and off

- 1cm temperature can be reproduced only when assuming that bottom circle is at 9.3K
- Transparent region start from above 12K

April 11 simulation, D2 flow on and off

• after D2 flow was off, 1 cm dropped to 11K, while the container has not changed, it consistent with Bottom circle at the same T as D-inlet

Condensation at 8.3/ 16.2/ 13, 0.8 l/m

Condensation at 8.3/16.2/13, 0.8 l/m

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low Trange
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate Trange (below and above 10K)
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

One step condensation

• initial Ts: **8K/ 18K/ 18K**; Ts were controlled by adjusting LHe flow and continuously decreasing flow of D2.

cooling

• final Ts: **7K/ 15K/ 15K,** D2 probes at **14K**, gradient only **1K**

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low Trange
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate Trange (below and above 10K)
 - one step condensation
 - surface frost
 - freezing from a liquid
- Recommendations

- We observed Surface frost during:
 - cooling down after condensation

- We observed Surface frost during:
 - cooling down after condensation

especially bad is fast cooling from T_{triple}

T=12K

- We observed Surface frost due to temperature oscillations:
 - LHe flow accidental oscillations
 - Intentional heat pulsing using heaters, if crystal T rises above 8.4K

 T_{base} = 8.5K, T_{max} =9.7K; $T_{top\ max}$ =14K

- We observed Surface frost due to temperature oscillations:
 - LHe flow accidental oscillations
 - Intentional heat pulsing using heaters, if crystal T rises above 8.4K

 T_{base} = 8.5K, T_{max} =9.7K; $T_{top\ max}$ =14K

 T_{base} = 7K, T_{max} =8.4K; $T_{top\ max}$ =11.5K

Surface Frost formation during cooling down

I set up heat shooting, as result at one point there was a bible in

Surface frost can be removed: accidental annealing

 I set up heat shooting, as result at one point there was a bible in LHe line and crystal annealed to 14K without significant increase of pressure

Outlines

- Solid Deuterium properties related to UCN production
- Growing small perfect sD2 crystals
- Growing large sD2 crystals in situ for UCN production
 - Overview of experimental setup
 - Study of SD2 growth
 - growing at operational temperature low T range
 - several steps condensation at high T-range (above 12K)
 - condensation at intermediate Trange (below and above 10K)
 - crystal shapes
 - one step condensation
 - freezing from a liquid
 - Study of SD2 surface degradation under heat pulsing
- Conclusions

Freezing from a liquid phase

Conclusions and Recommendations for UCN SD2 source design

- It is possible to grow SD2 crystal of a good quality for UCN production
- Quality and shape of the crystal is defined by temperature of cryostat walls
- Special care must be taken about Surface frost formation
- When designing UCN source think about:
 - modeling thermal performance of the cryostat
 - Positioning temperature sensors to characterize temperature profile of the walls
 - Good cooling power to keep SD2 temperature as close to 5K as possible
 - Design LHe system to avoid flow instability and allow growing crystal above operational T
 - Testing of crystal growth and surface annealing before installations

