LLRF for ESS – Modelling and Control

Olof Troeng LLRF Group @ ESS &

Department of Automatic Control @ Lund University

 1666

Olof Troeng LLRF Group @ ESS & Department of Automatic Control @ Lund University: [LLRF for ESS – Modelling and Control](#page-22-0)

What is Control?

Accelerator Controls: Providing computer environment that allows remote access to accelerator hardware // . . . [\[3\]](#page-21-0)

Automatic Control: Modelling and controller design for dynamic systems to obtain desired performance.

What this talk will be about

What this talk will be about

Overview

- **RF System Modelling**
- Analysis from a control perspective
	- Prediction of achievable cavity field stability
	- What factors limit/affect achievable performance

Cavity Model [\[2\]](#page-21-1)

$$
\frac{d}{dt} \begin{bmatrix} V_{\text{Re}} \\ V_{\text{Im}} \end{bmatrix} = \begin{bmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{bmatrix} \begin{bmatrix} V_{\text{Re}} \\ V_{\text{Im}} \end{bmatrix} + \begin{bmatrix} R_L\omega_{1/2} & 0 \\ 0 & R_L\omega_{1/2} \end{bmatrix} \begin{bmatrix} I_{\text{Re}} \\ I_{\text{Im}} \end{bmatrix}
$$

- **V** cavity voltage
- $I = 2I_g + I_b =$ klystron current + beam current
- \bullet $\omega_{1/2}$ cavity bandwidth
- ∆*ω* detuning of the cavity

Klystron & Modulator Model

Klystron dynamics are modelled by 1st order low-pass filter with 1.9 MHz bandwidth.

Each % of modulator voltage variation induces $>10^\circ$ phase shift and 1.25% amplitude change in the klystron output [\[1\]](#page-21-2).

RF Distribution & Cables

Time delays:

Klystron \rightarrow Cavity (Waveguide) 40 m / 0.68c = 175 ns Cavity Probe \rightarrow LLRF (Coax.) 40 m / 0.82c = 145 ns LLRF \rightarrow Klystron (Coax.) 10 m / 0.82c = 40 ns

 360 ns : Le $\bar{\text{res}}$ – Modelling and $\bar{\text{res}}$

LLRF

Control algorithm execute @ 100 MHz on FPGA

Analog/Digital Converter Noise: 60 dB SNR

Downsampling (improves SNR 10 dB) modelled as 1st order filter with 5 MHz bandwidth

Putting things together

Putting things together

Putting things together

Analysis from a control perspective

Control Methodology

Flat-top operation is considered. Disturbances are either repetitive or random.

Repetitive disturbance -> Iterative Learning Control

Random disturbance -> Feedback

Disturbance Rejection using Feedback

Disturbance Rejection using Feedback

Bode's Integral Theorem,

$$
\int_0^\infty \ln\frac{1}{1+P(i\omega)C(i\omega)}\mathrm{d}\omega=0
$$

puts fundamental limitation on achievable control performance.

Disturbance Rejection using Feedback

Loop delay has large impact on achievable performance!

Frequency Specific Disturbance Rejection

Increased controller gain at a specific frequency gives improved narrow-band disturbance rejection. Small degradation for other frequencies.

Feed-Forward of Beam Current Ripple (1/2)

Accessing the measurement signal from the Beam Current Monitors seems feasible.

Feed-Forward of Beam Current Ripple (2/2)

Potential performance gain from using feed-forward from beam current monitor.

Assumptions: BCM BW = 1 MHz, good SNR for the BCM. Ion Source BW = 0.65 MHz, Cavity BW = 12 kHz, Loop-delay 1us

- There are limitations to what can be achieved by control.
- **•** Time delays, beam current ripple and klystron ripple are the main performance limitations.
- **Good disturbance rejection for**
	- \bullet Low frequencies (< 1 kHz)
	- \bullet High frequencies (> 1 MHz)
	- Narrow-band disturbances (with modified controller)
- Two methods for improved disturbance suppression were presented.

Thanks to the following people for providing input to the presentation

- The RF Group @ ESS
- LLRF group @ EIT, Lund University
- **Prof. Anders Karlsson, Gabrielle, Renato @ EIT, Lund University**
- Hooman Hassanzadegan @ ESS
- My supervisors Bo Bernhardsson, Anders J Johansson, Rolf Johansson

[1] R. Zeng A. Johansson K. Rathsman S. Molloy.

Influence of the droop and ripple of modulator on klystron output. 2011.

[2] Thomas Schilcher.

Vector sum control of pulsed accelerating fields in Lorentz force detuned superconducting cavities. PhD thesis, 1998.

[3] Elke Zimoch.

Accelerator controls.

Joint Universities Accelerator School, 2015.

