# CERN SPL Cavity Measurements Report

Alick Macpherson on behalf of CERNs SPL measurement team

Nuria Valverde Alonso, Karim Gibran Hernandez Chahin, Oscar Sacristan De Frutos, Szabina Horvath-Mikulas, Christophe Jarrige, Alick Macpherson, Pierre Maesen, Sotirios Papadopoulos, Kai Papke, Ercan Pilicer, Francois Pillon, Karl-Martin Schirm

18 March 2015

- Cavity construction
  - Trimming + Tuning Bench + Tuner Measurements
- 2 Kelvin Testing of Nb 5-cell Bare SPL Cavities
  - Cavity Preparation Issues
  - 1st & 2nd cold Test of SPL\_1
- Schedule, Plans and Upgrades
  - Objectives, Procedures and what happens next ...

# Cavity Construction: Trimming and Tuning







# Trimming and Tuning: Target Frequency



#### Setting the target frequency value for trimming

- 1. Cavity:  $f_{\pi}(2 \text{ K \& under vacuum}) = 704.400 \text{ MHz}$
- 2. Dumb-bell:  $f_{\pi}(300K \& nominal length \& vacuum) = 704.043 MHz$
- 3. Dumb-bell:  $f_{\pi}(300K \& nominal length \& dry air) = 703.836 MHz$
- 4. Dumb-bell:  $f_{\pi}(300K \& nominal length + 5mm \& vacuum) = 696.467 MHz$
- 5. Dumb-bell:  $f_{\pi}(300K \& nominal length + 5mm \& dry air) = 696.286 MHz$

#### Setting the target Cavity length:

- L = 1397.3 mm ± 3 mm at 300 K
- L = 1392.9 mm ± 3 mm at 2K

# Frequency and length correction



- Construction of 5 Cell Cavity
  - Trimming: Trim dumbbell to get close to target frequency and length
  - Tuning: Plastically deform 5-cell cavity to required freq, length & field flatness
    - Caveat: In cryomodule, operate tuner in one direction (elastically deform)



# Frequency and length correction



- Construction of 5 Cell Cavity
  - Trimming: Trim dumbbell to get close to target frequency and length
  - Tuning: Plastically deform 5-cell cavity to required freq, length & field flatness
    - Caveat: In cryomodule, operate tuner in one direction (elastically deform)



# Trimming and Tuning Sensitvities









Total Cavity Displacement in mm

0.25

0.5

Ο.

-0.25

-100

-0.5

#### **Tuner Measurements**



COLD TUNER SENSITIVITY SPL-RI-NB-CAV3



#### Tuner Measurements: Field Flatness







# Cavity Cold Testing



# **Cavity Preparation Steps**

- Chemistry:
  - Electro polishing of 160 200 um
  - Heat treatment: 650 degree for 24hrs
  - Light Electro polishing of 10 20 um
- HPR at 100bar with ultra pure water
  - Conductivity >18M $\Omega$ /cm TOC < 16 ppb Water Temperature : 26°c
  - Drying in hot nitrogen atmosphere then 12 hrs in laminar clean air flow
- Cavity Assembly and Pump down
  - Done in ISO-4 cleanroom. Pump down within 36 hrs after end of HPR
- 120 deg C Bakeout.
  - Duration: was ~12 hrs. Now 48 hrs
  - RGA on cavity vacuum (for comparison with RGA after cold test)
- Mounting on Insert and assembly into cryostat
  - Bakeout of vacuum pumping line before opening cavity valve.
  - Mounting of diagnostics

# Cavity Preparation





#### Assembled Insert





#### SM18 SPL Cold Tests in 2014



#### Summary Results from the two cold tests

- 1st Cold Test: Q0 limited due to valve contamination and incomplete HPR
  - Residual Surface Resistance @ = 94 ± 3 nOhms
- 2nd Cold Test: Gradient limited due field emission
  - Residual Surface Resistance = ~18 nOhms



14

# 1st Cold Test: Passband Frequencies

 $\frac{1}{5}\pi - mode$ 

Simulated (2K): 692.470 MHz Measured (4.5K): 692.062 MHz Measured (1.8K): 692.293 MHz



 $\frac{2}{5}\pi - mode$ 

Simulated (2K): 695.696 MHz Measured (4.5K): 695.277 MHz Measured (1.8K): 695.500 MHz



 $\frac{3}{5}\pi - mode$ 

Simulated (2K): 699.756 MHz Measured (4.5K): 699.464 MHz Measured (1.8K): 699.382 MHz



 $\frac{4}{5}\pi - mode$ 

Simulated (2K): 703.107 MHz Measured (4.5K): 702.773 MHz Measured (1.8K): 702.992 MHz



 $\pi$  – mode

Simulated (2K): 704.408 MHz Measured (4.5K): 704.219 MHz Measured (1.8K): 704.432 MHz



- 1st Cold Test: Dominated by low gradient and high field emission
  - Use passband modes to look for problems
- Mode 1
  - Multi-pacting at low stored energy.
- Mode 2
  - Multi-pacting at low stored energy. Processable
  - Electron loading at higher stored energy
- Mode 3
  - Moderate levels of field emission (200usv/hr)
- Mode 4
  - High levels of field emission (> 3 mSv/hr)
- Mode 5
  - High levels of field emission (>3 mSv/hr)



- 1st Cold Test: Dominated by low gradient and high field emission
  - Use passband modes to look for problems





- 1st Cold Test: Dominated by low gradient and high field emission
  - Use passband modes to look for problems





- 1st Cold Test: Dominated by low gradient and high field emission
  - Use passband modes to look for problems



# 2nd Cold Test: Getting better...



# 2nd Cold Test: Getting better...



# Both Cold Tests: Problems and Issues

- 1st SPL Cold Test
  - Surface issues due to Electro-polishing with non-optimal cathode
  - HPR duration too short ( 2 hrs)
  - Contamination from bellows of vacuum valve
- 2nd SPL Cold Test



Surface effects

- Surface issues due to Electro-polishing with non-optimal cathode
- Non Optimised HPR (6hrs 45 min duration)
- Contamination from antenna feed through
- Breakdown of power cable in during Helium Processing



**Contamination from power antenna connection to feedthrough** 

# The Art of High Pressure Rinsing

- Typical HPR -> not yet fully optimised
  - Duration: ~6 hrs, Pressure: 100 bar Consumption: ~800 litres
- Drying:
  - 15 min purge with room temperature N2 + 45 min drying with 100° C N2
  - 12 hr dry in laminar air flow in ISO-4 clean room



### What I shouldn't show you

- 2nd Cold test: Measurement after short helium processing
  - Input power cable failing and difficult to calibrate ...
- Comparison with Crab Cavity Cold Test in same cryostat



SPL\_1: After Helium Processing but with cable break down

#### What I shouldn't show you

- 2nd Cold test: Measurement after short helium processing
  - Input power cable failing and difficult to calibrate ...
- Comparison with Crab Cavity Cold Test in same cryostat



#### Schedule, Plans and Improvements

#### Chemistry:New Electro-Polishing Cathode





#### ASSEMBLY CATHODE SEQUENCE SEE SPLACST\_0297

PLANT GUIDE CATHODE + FLANGES REF. FOR CAVITY RETURNED, SEE **SPLACST\_0298** 

|                 |                           | 6        | HEX HD SCREW GRADE A M6X35       | 64 | St. Steel A4            | ISO 4017_M6x35-A4 | 47.62.8 |
|-----------------|---------------------------|----------|----------------------------------|----|-------------------------|-------------------|---------|
|                 |                           |          | VIS H GRADE A M6X35              |    |                         |                   | 262.6   |
|                 |                           | <b>—</b> | FLANGE PICK UP                   | 63 | Niyin(itee famile       | SPLACST_0243      |         |
|                 |                           | Ľ.       | BRIDE PICK UP                    |    | PVDF                    | ST0441248         |         |
| NOTA:<br>Silver |                           |          | UPPER FLANGE CAVITY RETURNED     | 62 | RolycingLines Castride  | SPLACST_0242      |         |
|                 |                           | Ľ        | BRIDE SUPERIEUR CAVITE RETOURNEE |    | PVDF                    | ST0441096         |         |
|                 |                           | Γ.       | FLANGE HOM                       | 61 | RolycinyCidene Flasmide | SPLACST_0241      |         |
|                 |                           | L.       | BRIDE HOM                        |    | PVDF                    | ST0441011         |         |
|                 |                           |          | FLANGE COUPLING                  | 60 | Nipingliane Faction     | SPLACST_0240      |         |
|                 |                           | Ľ        | BRIDE COUPLEUR                   |    | PVDF                    | ST0441009         |         |
|                 |                           | Γ.       | GUIDE PVDF CATHODE RETURNED      | 59 | DELRIN + (PON)          | SPLACST_0296      |         |
|                 |                           | Ľ.       | GUIDE PVDF CATHODE RETOURNEE     |    |                         | ST0477530         |         |
|                 | INUX THREAD RUDS & SCREWS |          | HEX HD screw grade A N8x20       | 58 | St. Steel A4            | ISO 4017_M8x20-A4 |         |
|                 |                           | 1.8      |                                  |    |                         |                   | 1       |



#### Chemistry:New Electro-Polishing Cathode



# SM18 HPR Optimisation

- Cavity geometry dictates optimal HPR water pressure and flow rate
  - Transparent cavity under construction for HPR Optimization
- HPR nozzle parameters to be optimised for reduction of field emission
  - Nozzle speed and RPM settings to be optimised for SPL
- HPR and drying process under under review

for Manufacture

Nitrogen atmosphere for HPR to avoid carbonates and hydrides







# Upgrade of cryostat insert

Improvement of connection of cavity pumping line

- Controlled laminar flow. Controlled installation zone
- Standard SPL mounting frame with possibility to electrically isolate cavity cavity from cryostat
  - Isolating inserts to monitor thermal-electric currents
- 3

Improved environmental monitoring and heating control

- Temperature monitoring: CERNOX, RuO2, Allen Bradley
- 0-50 mbar bath pressure sensor
- Ambient Magnetic field compensation: below 10 nT
- Completely new insert and power cables setup
  - Insert rated unto 500W CW





## Schedule & plans

- Cold Test Objectives for 2015 :
  - Cold Test 4 SPL cavities in SM18 after treatment with new EP cathode
    - Successful cold test => 25 MV/m with a low field Q0>1010
  - SPL cold test activities must interleave with Crab cavity test program
- Implications to schedule
  - Cryo returns to SM18 test facility on 23rd March
  - **SPL\_1: Retested as is** => test to validate HPR + preparation steps
    - Test Duration: 6 weeks
      After: back to Chemistry for EP& retest
  - SPL\_2: Chemistry + Optical inspection finished by end of April
    - Available for Testing by May
      Test slot: 1 month Duration
- Other cavities to follow
  - SPL\_3 assigned to tuner tests SPL\_4 assigned to tuning bench
- In parallel:
  - SPL\_5 Construction: Trimming of dumb-bells finished in March.
  - Helium tanks at CERN and we start with Mechanical checks ....
  - Preparation of the SM18 Horizontal bunker -> main issue is cryo distribution line

# Summary remarks

- Trimming and Tuning activities
  - Construction and measurement program advancing well
  - Development of a broad base of expertise and skills
- Cold Test results
  - 1st & 2nd cold tests of SPL\_1 hampered by surface contamination issues
  - Preparing for a 3rd Test to verify preparation & installation sequence
    - There is cause for optimism with the upcoming cold test
  - SPL\_2 Is expected to be tested by mid year after EP with new cathode
- Schedule & upgrades
  - Significant time and effort is being invested in upgrading and training
  - 2015: a full year of cavity preparation and testing CERN's SM18 facility

# Spare Slides

# $\pi$ -Mode Frequency Validation of SPL Nb 5-Cell



Coupler port

Pick-up port

~600 kHz frequency shift due to hard electro-polishing. agrees with expectation from simulation



# Effect of Electropolishing





## SPL Nb 5-Cell: Thermal Treatment



# Insert Upgrade

- Validation of insert infrastructure
  - Pumping line
  - Helium injection into cavity vacuum
  - Residual gas analysis system





# Helium Tanks



#### Upgraded Mechanical sensor system

# Strain gauges



# Displacement sensor

