DE LA RECHERCHE À L'INDUSTRIE

Experience from IPHI

RFQ mini-workshop Cavity & Beam Dynamics & Strategies for Hiigher Current Commissioning

N. Chauvin*, on behalf of the IPHI team.

*Nicolas.Chauvin@cea.fr

CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.

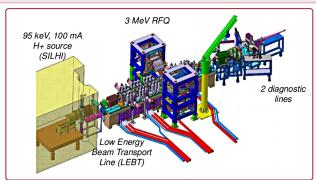
February 25, 2022

Overview

- 1 The IPHI Facility, a High Intensity Proton Injector
- **2** LEBT Commissioning
- **3** RFQ Beam Commissioning
- MEBT Commissioning and Experiments with IPHI
- **5** Conclusions and Perspectives

Overview

- 1 The IPHI Facility, a High Intensity Proton Injector
 - IPHI Overview
 - SILHI Ion Source
 - LEBT
 - RFQ
 - MEBT
- 2 LEBT Commissioning
- **3** RFQ Beam Commissioning
- **MEBT Commissioning and Experiments with IPHI**
- **5** Conclusions and Perspectives

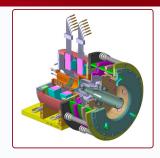


IPHI Main Parameters

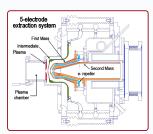
A demonstrator of a 100 mA CW proton injector

Main parameters

- ECR ion source and LEBT: 100 mA, 95 keV, pulsed or cw
- 4-vanes RFQ: 100 mA, 3 MeV, 352 MHz
- Power sources: 2 klystrons of more than 1 MW
- 2 beam lines: straight line with beam dump and a deflected line with dipole magnet.



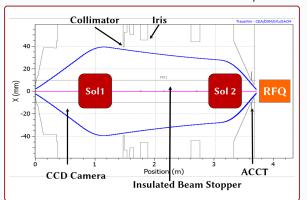
Light Ion Production


Ion Sources at CEA-Saclay

SILHI Ion Source Main Parameters

- Developed in Saclay since 1994
- 2.45 GHz ECR ion sources
- Particles: H⁺, D⁺, He⁺
- Pulsed to c.w. beam
- Designed for 100 mA H⁺ pulsed or c.w.
- SILHI-like source developped for IFMIF and FAIR proton linac

2.45 GHz SILHI ion source



Low Energy Beam Transport (LEBT) Line

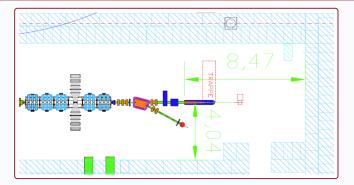
The IPHI LEBT:

- Dual solenoid focusing scheme
- Sterrers to correct beam misalignment
- Beam diagnostics (DCCT, ACCT, CCD Camera, Insulated Beam Stopper)
- Iris to control/limit beam size and intensity

IPHI 4-Vanes RFQ

Parameter	Value
Particle	H^+
Max. Current [mA]	100
Frequency [MHz]	352
Input Energy [keV/u]	95
Output Energy [MeV/u]	3
RFQ length [m]	6
Duty Cycle [%]	cw

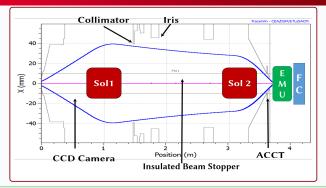
- R&D program for high intensity beams (CEA/CNRS/CERN)
- Segmented in 6 sections
- Mech. tolerances $\pm 30 \ \mu m$
- Commissioned in 2016 in pulsed mode



Medium Energy Beam Transport (MEBT) Line

Medium energy beam lines

- RFQ output section 1: 3 quadrupoles
- Dipole magnet 28.5°
- Straight section: 2 quadrupoles and 300 kW beam dump
- Deflected line: 2 quadrupoles and beam stopper or experiment


Overview

- 1 The IPHI Facility, a High Intensity Proton Injector
- **2** LEBT Commissioning
 - LEBT Layout
 - Simulation Strategy
 - Simulation vs Experience
- 3 RFQ Beam Commissioning
- MEBT Commissioning and Experiments with IPHI
- **6** Conclusions and Perspectives

SILHI source & LEBT

Experimental Setup

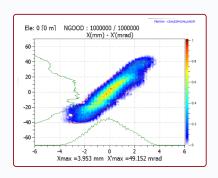
SILHI source & LEBT setup

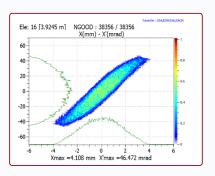
- LEBT with 2 solenoids
- Total length: 3.5 m
- RFQ injection cone
- Emittancemeter (Allison scanner) and Faraday Cup at the end of the beam line

Simulation strategy

- **Experiment: optimization** of the beam transmission through the cone. Solenoids values are fixed.
- Experiment: emittance measurement.
- **Simulation:** using TraceWin, **adjustment** of the beam initial conditions $(\alpha, \beta, \varepsilon)$ and degree of SCC to **fit** to the measured emittance.
- Simulation: using TraceWin with the fitted parameters determination of optimal solenoid values for RFQ injection.
- **Solution Experimental validation**: Emittance measurement.

This method is simple and independent of:

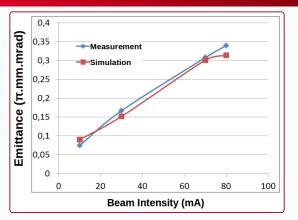

- Self-consistent SCC simulations (time consuming)
- Ion source beam distribution simulation
- PRO: An empirical model that is easy to use
- CONS: Lack of physics in the model



Simulation vs Experience

Emittance Measurement

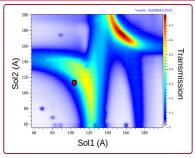
$$I_{CF} = 30 \text{ mA}$$


Experiment $\varepsilon = 0.17 \ \pi$.mm.mrad

Simulation ε = 0.15 π .mm.mrad

Simulation vs Experience

Emittance vs Beam Intensity


SILHI LEBT simulations

- Simulations give a quite good agreement with data
- Model has to be tested with a 100 mA beam
- Validation with SCC self consistent code (Warp) is needed

Simulation Results

LEBT Transmission vs Solenoid Magnetic Field

Transmission

(b) 2005

(b) 2005

Sol1 (A)

Experiment

Simulation

Beam intensity: 40 mA

- Reasonable agreement.
- Discrepancies: alignment and steerers.
- RFQ optimal injection \neq Maximal LEBT transmission

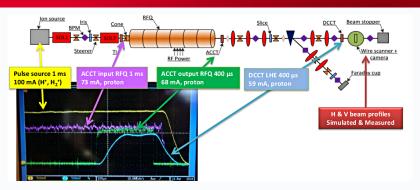
Overview

- 1 The IPHI Facility, a High Intensity Proton Injector
- **2** LEBT Commissioning
- **3** RFQ Beam Commissioning
 - RFQ Commissioning
 - Beam Commissioning at Low Power
 - Beam Commissioning at High Beam Power
- MEBT Commissioning and Experiments with IPHI
- **5** Conclusions and Perspectives

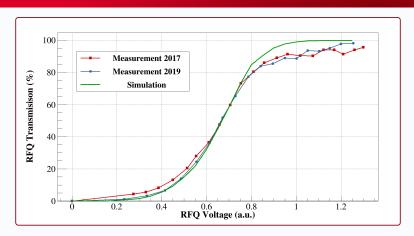
IPHI RFQ Commissioning

See Michel & Olivier's talk

RF Conditioning

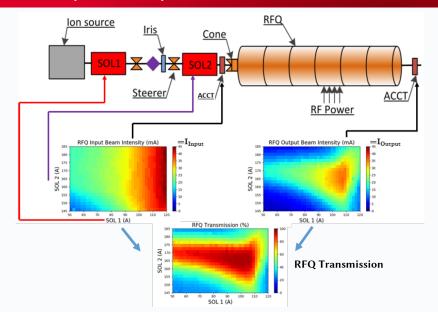

- Conditioning started in April 2015 limited by the cooling system of the RFQ (duty cycle limited to 1%)
- After technical issues, conditioning restarted in February 2016 until 1.2 MW peak with a duty cycle of 0.5%
- April 2016: first beam accelerated: Intensity = 60 mA at 0.4% d. c.
- Mid-2018: nominal voltage reached at 5% d. c.
- End 2018: RF platform upgrade (pulsed klystron, installation/test a new CW klystron), RFQ cooling system upgrade
- Mid-2019: RF tuners have been replaced
- September 2019: nominal voltage reached at 50% d. c.

April 2016: First Beam Accelerated


Results obtained

- Transmission through the RFQ in 2016: 93% Now: 96%.
- Accelerated beam in 2016: Intensity = 60 mA at 0.4% duty cycle.
- Output beam energy (3 MeV) was checked with dipole magnetic field.
- October 2018: beam power of 7 kW was accelerated.

Transmission vs RFQ Voltage


Low Beam Power

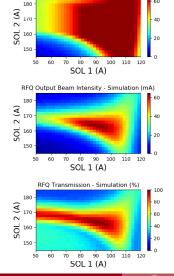
- Measurement performed for a \approx 70 mA proton beam at the RFQ injection
- Two measurements: before (2017) and after (2019) tuner replacement

RFQ Transmission vs LEBT Solenoids Tuning Experimental Setup

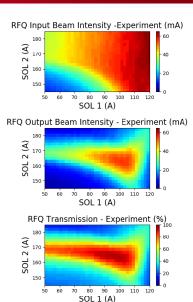
RFQ Transmission vs LEBT Solenoids Tuning

Experimental conditions

- 80 mA H $^+$ beam from the source (total extracted current \approx 100 mA) then reduced by iris
- Duty cycle: 10^{-4} (100 µs at 1 Hz) \longrightarrow beam pulses achieved by RFQ (2 ms pulses from the source) RFQ as a chopper...
- Data taken for several iris aperture


Simulation model

- Initial LEBT model established during LEBT commissioning + RFQ simulation
- The input Twiss parameters have been optimized (within 15%) and SCC (within 5%) to minimize the experimental/simulation spread
- It has been found that the solenoids magnetic field have to be increased by 8% to minimize the experimental/simulation spread
 Solenoids field measurement is needed to confirm that.

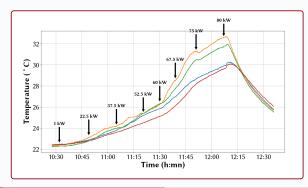


RFQ Transmission vs LEBT Solenoids Tuning

Experiment vs Simulation for Iris aperture 90 mm

RFO Input Beam Intensity - Simulation (mA)

Beam Commissioning

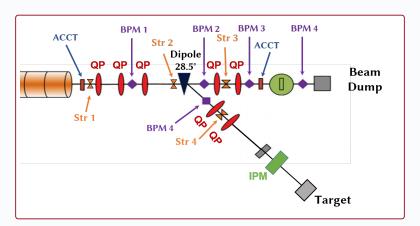

Beam Power Ramp-up

September - October 2019

- The extracted beam power was gradually ramped-up to 80 kW.
- Peak current at RFQ output: 50-55 mA.
- ullet The duty cycle was increased from a few % to 50 %.
- The beam was sent to the beam dump (direct beam line).

Pulses: 7 ms @ 50 Hz $I_{H^+} = 50 \text{ mA}$ Beam Power =

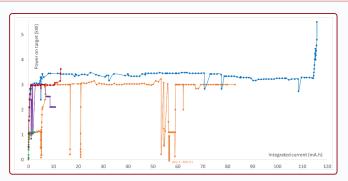
Overview


- 1 The IPHI Facility, a High Intensity Proton Injector
- **2** LEBT Commissioning
- **3** RFQ Beam Commissioning
- MEBT Commissioning and Experiments with IPHI
 - IPHI MEBT Setup
 - Experiments with IPHI 2019 2020
 - Toward a 30 kW Experiment 2021 2022
 - The 30 kW Experiment 2022
- 6 Conclusions and Perspectives

IPHI MEBT Setup

Two Beam Lines

- A straight line to a beam dump (300 kW)
- An experimental line (deflection 28.5°)



Experiments with IPHI 2019 – 2020

Beam Power up to 6 kW

Target Tests for Neutron Production

- 21 mA pulsed beam: pulses of 2.85 ms @ 17 Hz
- 5 targets testes, 239 hours of beam on targets
- A target tested up to 115 mA.h, 5.5 kW
- Beam size: $\approx 11 \, \text{mm RMS} < P > max \approx 0.5 \, \text{kW cm}^{-2}$

Integrated Power on Targets

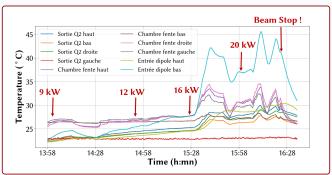
Toward a 30 kW Experiment 2021 – 2022

Goals

- Tests of a higher power neutron production target
- Required power on target: 30 kW
- Beam Intensity $\approx 30 \, \text{mA}$
- Duty cycle: 10 ms pulses @33 Hz
- Beam on target during 100 hours
- Beam size on target: $\sigma_x = 15 \, \text{mm} / \sigma_y = 20 \, \text{mm}$

IPHI MEBT Commissioning @30 kW

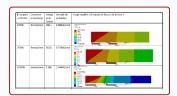
- Commissioning with a 30 kW beam transported in the experimental line (28.5°)
- Stability tests for "long runs"



Toward a 30 kW Experiment 2021 – 2022

First Beam Tests

- Array of thermocouples along the beam line
- Power ramp-up to 30 kW to the beam dump (straight line)
- Several days later: a hole in the beam line
 @20 kW before Q3



Incident Analysis

- Small increase of beam current before hole (instability)
- BPMs signal remained stable
- Data archiving: 2 s resolution
- No signal on neutron beam loss monitors

Thermal Calculations

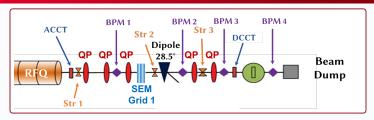
- Beam "spot" around φ 6 mm on the beam pipe
- For 85 W power lost: 1 hour
- For 200 W power lost: 1 mn
- At 10 cm of the hot spot ≈ 45°C after 1 hour for 85 W power lost
- Difficult to record a sudden increase of beam beam loss (200 W) at more than 1 cm

Power Ramp-up Strategy

Beam Trajectory Correction

Secure the Beam Position at Low Duty Cycle

- Measurements at nominal intensity (35 mA) and 10⁻⁴ duty cycle
- Magnetic steerers field measurement (field maps were wrong!)
- Test of the BPMs with a new electronic + IPHI electronic calibration
- Cross check of the beam position measurements with a SEM grid
- Beam alignment in quad center to minimize dipolar kicks

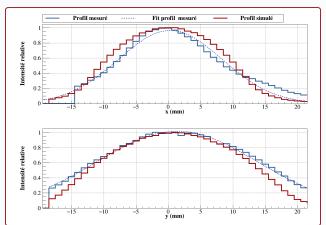

Duty Cycle increase

- Keep the BPM signal constant with the duty cycle increase
- Thermal camera monitoring
- Keep the measured temperatures below 28°C

Measurements vs Simulation @ SEM Grid Position 1

Beam Profile Measurements

- SEM grid from GANIL (44 tungsten wires with 1 mm step)
- Measurement on RF axis, before dipole
- Measurements at nominal beam intensity (35 mA) and 10^{-4} duty cycle (≈ 10 W)


Beam Dynamics Simulation

- Input beam distribution coming from RFQ simulation
- Quadrupole field maps in agreement with field measurement

Measurements vs Simulation @ SEM Grid Position 1

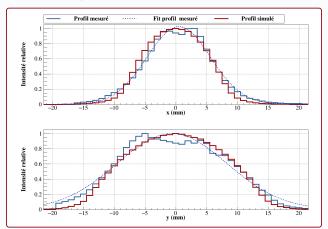
Beam Intensity: 34 mA – Quad triplet = 0 A

Measured Profile

 $\sigma_x = 7.8 \,\mathrm{mm}$ $\sigma_y = 9.6 \,\mathrm{mm}$

Gaussian Fit

 $\sigma_x = 8 \,\mathrm{mm}$ $\sigma_y = 12.3 \,\mathrm{mm}$


Simulation

 $\sigma_x = 7.4 \,\mathrm{mm}$ $\sigma_v = 9.0 \,\mathrm{mm}$

Measurements vs Simulation @ SEM Grid Position 1

Beam Intensity: 34 mA - Q1=-47 A / Q2=75 A / Q3=-45 A

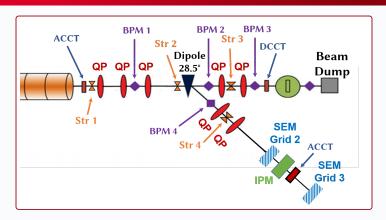
Measured Profile

 $\sigma_x = 5.3 \,\mathrm{mm}$ $\sigma_v = 7.9 \,\mathrm{mm}$

Gaussian Fit

 $\sigma_x = 5.2 \,\mathrm{mm}$

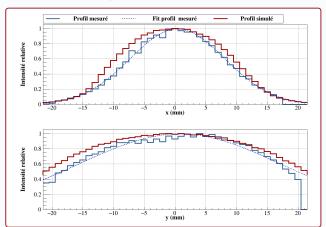
 $\sigma_y = 8.9 \,\mathrm{mm}$


Simulation

 $\sigma_x = 4.7 \,\mathrm{mm}$ $\sigma_v = 7.2 \,\mathrm{mm}$

 $y = 7.2 \,\mathrm{mm}$

Measurements vs Simulation @ SEM Grid Position 2 and 3


Beam Profile Measurements

- Measurement with SEM 2 in the beam line (permanent position)
- Measurement with SEM 3 at target position

Measurements vs Simulation @ SEM Grid Position 2

Beam Intensity: 34 mA - Q4=-3.7 A / Q5=11.2 A

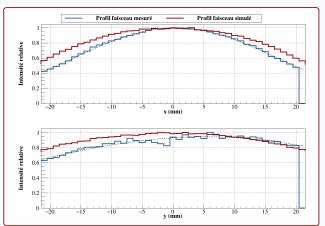
Measured Profile

$$\sigma_x = 7.2 \,\mathrm{mm}$$
 $\sigma_v = 10.8 \,\mathrm{mm}$

N. Chauvin

Gaussian Fit

$$\sigma_x = 7.7 \,\mathrm{mm}$$
 $\sigma_v = 16.3 \,\mathrm{mm}$


Simulation $\sigma_x = 7.7 \, \text{mm}$

$$\sigma_y = 12.0 \, \mathrm{mm}$$

Measurements vs Simulation @ SEM Grid Position 3 (Target)

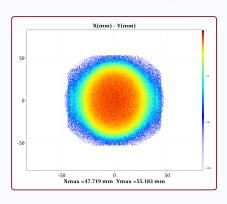
Beam Intensity: 34 mA - Q4=-3.7 A / Q5=11.2 A

Measured Profile

 $\sigma_x = 10.8 \,\mathrm{mm}$ $\sigma_v = 11.7 \,\mathrm{mm}$

Gaussian Fit

 $\sigma_x = 16.6 \,\mathrm{mm}$ $\sigma_v = 30.5 \,\mathrm{mm}$

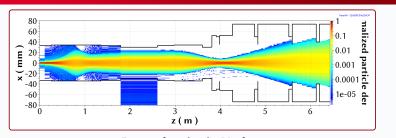

Simulation $\sigma_x = 12.3 \,\mathrm{mm}$

 $\sigma_y = 13.0 \,\mathrm{mm}$

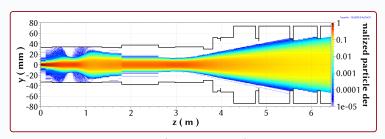
Measurements vs Simulation @ SEM Grid Position 3 (Target)

Beam Intensity: 34 mA - Q4=-3.7 A / Q5=11.2 A

Simulated Beam Distribution on Target


Simulated Beam Size on Target

 $\sigma_x = 15.8 \,\mathrm{mm}$ $\sigma_v = 20 \,\mathrm{mm}$


SEM grid measurement range (-19 mm - + 23 mm) is too small for the

Simulation of Beam Transport in the MEBT Line

Beam density in X plane

Beam density in Y plane

Neutron Production Experiment

January/February 2022

Thermal Tests on Al Target

- 2 days of experiment at 30 kW (with a maximum @ 37 kW beam power)
- Final beam centring on target (temperature measurement)
- Thermomechanical calculations validation

Final Experiment with Be Target

- 10 days of experiment (\approx 10 hours beam time per day)
- Average beam power around 27 kW (limitation due to the target)
- A few technical problems (power supply, control system) but no problem with the beam
- More than 100 hours of beam time integrated on target
- On the last day/night: 24 hours of beam without major stops (a few sparks at the ion source)

Overview

- 1 The IPHI Facility, a High Intensity Proton Injector
- **2** LEBT Commissioning
- **3** RFQ Beam Commissioning
- MEBT Commissioning and Experiments with IPHI
- **6** Conclusions and Perspectives

Conclusions and Perspectives

Conclusions

- IPHI beam commissioning has been done up to 80 kW beam power during a short time
- IPHI beam commissioning has been done up for a reliable operation with a 30 kW beam power
- The beam transport in the whole accelerator has been simulated
- A neutron production experiment has been performed with more of 100 hours of beam time on target

Lesson Learned and Perspectives

- We were too optimistic, at the beginning, with a high power beam
- Lack of interlock and MPS on IPHI (will be added)
- RFQ bead-pull measurement and tuning
- A 3 MeV emittancemeter (slit-grid) is under development
- Replacement of diagnostics (never enough diags...) is planned
- A chopper for the LEBT is under development

The Whole Team!

... an those who are not on the picture: C. Alba-Simionesco, B. Bolzon, R. Braud, J. Darpentigny, C. Doira, C. Deberles, R. Duperrier, G. Exil, Y. Gauthier, F. Gibert, E. Giner-Demange, A. Gomes, T. Hamelin, K. Jiguet, E. Jorgji, W. Josse, O. Kuster, R. Lautie, P. Lavie, A. Letourneau, A. Marchix, C. Marchand, A. Menelle, K. Paunac, P. Permingeat, E. Petit, O. Piquet, F. Porcher, B. Pottin, F. Prunes, O. Sineau, L. Thulliez, H. N. Tran, D. Uriot.

Thank you for your attention!