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Summary 

●Overview

– Facility status

– Detector etc. group

●Detector/camera technologies

●Detector test and calibration

●DAQ and control systems

– Slow control (Tango)

– Data acquisition

– Storage
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Overview 

●3 GeV and 1.5 GeV storage rings 

● full energy linac with Short Pulse 
Facility

●First beamline user operation 
2016, now 11 beamlines in 
operation, 5 in commissioning, 
photon energies from 275 eV to 
40KeV
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Detectors and Scientific Software Group

● approx 50% det and 50% sci-sw

● Detectors half

– Advise beamlines during 
procurement

– Liaise with companies

– Site Acceptance Tests + 
characterization and performance

– Trouble shooting and updates

– Work with rest of KITS on control 
and DAQ integration

– Bring in non-commercial solutions
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DETECTOR TECHNOLOGY

5



Pixel detector requirements

Typical (competing) requirements 2D detectors must satisfy:

● Provide good spatial resolution (100 - 5 um)

● Handle high incoming flux (~1E9 photons/s/mm²)

● Allow high frame rate (kHz)

● Suitable energy range (1 to 40 KeV )

● Provide high dynamic range (12 – 32 bits)

Spectroscopy detectors and delay lines are left for a future meeting
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Direct - hybrid detectors (separate 

sensor and electronics) - X-ray photons 

deposit their energy in the detector 

material (e.g. Si) directly

Pixel Area Detectors 

Indirect - eg sCMOS cameras for 

visible range - first a conversion is needed 

from X-rays to visible light (phosphorus) or 

electrons (MCP)

● General term for any pixelated solid state 2D X-ray photon detector

● Can use direct or indirect detection and be photon counting or charge integrating



Charge Integrating - energy of the detected 
photons integrated over an exposure time.

+ Can accept high incoming flux

- Information contained in the energy of the 
individual photon is lost

- Noise sources such as dark current are 
included in the integral

- Limited dynamic range (saturation), multiple 
gains required

Pixel Area Detectors 

Photon counting - readout electronics processes 
each single X-ray photon.

+ Threshold(s) allow noise free acquisition (any 
exp.)

+ Linear behaviour over the entire dynamic range 
as long as the counter depth is sufficient.

- Limited by incoming flux

- Charge sharing means photons lost at pixel 
corners

Direct detection + photon counting → hybrid photon counting detectors (HPCs) = current standard



Technologies

Come in several different types, e.g.:

⚫ (s)CMOS “cameras” (Andor Zyla, Tucsen Dhyana...)

⚫ usually require conversion (works with soft x-ray)

⚫ charge integrating → no limit on incoming flux

⚫ sCMOS is “low noise” but not zero (→ dark current)

⚫ limited frame rate (~10s of Hz)

⚫ small pixels

⚫ Hybrid Pixel (or Photon) Counting (HPC) detectors (Eiger, Pilatus, Medipix...)

⚫ zero noise

⚫ high frame rate

⚫ hard X rays only (> ~4 KeV)

⚫ non-linearity at high flux (count rate)

⚫ pixel edge effects



HPC examples – Dectris Eiger & Eiger2

● Several examples at MAX IV, both Eiger 
and Eiger2

● 500Hz max frame rate (E2-4M)

● Eiger: 3ms dead time, max 10⁶ 
photons/pixel/s

● Eiger2: ”continuous readout” (double 
counters), max 10⁷ photons/pixel/s 
(retriggering)

● Two energy thresholds per channel

● http interface for control, data written 
to DCU or streamed via ZMQ.

● Throughput 1GB/s (E2-4M)
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DETECTOR CALIBRATION 
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HPC Site Acceptance Test- Custom X-Spectrum Lambda

Medipix3: CERN technology commercialized via 
research-industry consortium

● 4 X-Spectrum modules in "windmill" pattern 
with center hole

– 4x 750Kpx modules = 3Mpx

– 2X DCU working in parallel

● 55 µm pixel pitch

● E > 5 KeV

● 12bit, 2kHz (faster with smaller 
counter) → 4x 18GB/s
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HPC Site Acceptance Test- Custom Xspectrum Lambda

● Flat field correction

– Subtract beam profile to 
estimate deviations

● Signal to noise ratio

– (Mean)/(std dev) ≈ √N

● Threshold scan

– ΔE / Δthrs

– Width of peak gives 
thrs. dispersion

- =

Flat field correction

average fit correction

SN ratio
Thrs scan
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sCMOS Site Acceptance Test – Hamamatsu Orca

● 5.5μm pixel pitch, 12 Mpx

● 120Hz max at 12 bit = 2 GB / s data 
rate 

● Readout to frame grabber card is 4 
lane CoaXPress

● To be used for tomography station

EMVA 1288 test

● Exposure scan with uniform 
illumination OR fix exposure and 
vary light intensity

● Let you determine:
– Gain (ADC / e-)

– Full well capacity

– Linearity

– SNR → Dynamic range

● Analysis is 90% automatic
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sCMOS Site Acceptance Test – Hamamatsu Orca

Full well capacity =
Saturation/K = 3.6E5 e-

Dynamic range: 1.3E5

S
a

tu
ra

tio
n

EMVA v3.0
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Non-commercial example: JUNGFRAU

● Direct detection CMOS for SwissFEL

● Charge integrating, multi gain, 1.1KHz

● 4Mpx detector planned for MicroMAX

● Pixel to pixel calibration using single 
photons

Gaussian (direct 
photons)

Charge-
sharing contribution

Noise pedestal 
gaussian

Histogram of a single pixel 
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Other non-commercial solutions

●Tristan

– 1Mpx, Timepix3 based; developed 
at Diamond

●Dhyana

– commercial back-illuminated 
sCMOS, sensitive to Xrays

– Adapted for vacuum

●Full speed Timepix3 readout R&D

– With Sunsval
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CONTROL SYSTEMS 
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ZMQ Stream Receiver

HDF5
Simple 

Processing

Scientific
Processing

HDF5

HDF5

HPC node

DAQ node

Full rate repub.2Hz repub.

Liveview
Server

Detector Control Unit (DCU)

ZMQ Stream Sender
(“Eiger-like”)

GPFS

Detector 
or Camera

Beamline

Server room

NB Control layer (Tango) not shown

MAX IV DAQ flow scheme

⚫ Design: ZMQ streaming where 
needed

⚫ 40GbE connection DCU to DAQ 
cluster from where data saved to 
hdf5 (GPFS)

⚫ Done: Eiger2, Pilatus, Andor, 
Dhyana...

Liveview
Client

40GbE



Typical detector device 

●Devices: standard interface 
to systems

– state

– commands

– attributes

●Uniform interface to wildly 
different detectors

– Space for det specific properties

●Can be used directly or as 
ground layer for orchestration

20



D
at

a 
fr

e
sh

n
e

ss

Storage: ‘Hot’ Tier

Storage: ‘Warm’ Tier

Storage: ‘Cold’  Tier

Optimized for ‘cost and 
longevity’.
Low storage cost, high 
retrieval cost 

Optimized for ‘performance’. 
Very fast, low I/O latency.

Optimized for ‘capacity’. 
Fast HDD storing.

Data migration

Raw data

Offline storage

Online storage

Metadata

Archive / 
restore

Long-term storage

15PB

4PB

420TB

Data Acquisition
cluster (DAQ)

Online computing

80 nodes, 2176 cores

Offline computing

14 nodes, 336 cores

Lunarc compute

180 nodes, 3600 
cores

Detector

Data Flow - Overview
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Summary

● Range of energies x range of requirements = range of detectors

– sCMOS and HPC

– Commercial vs research

– ...

● Detector specific DCU + standardized DAQ and control

● Detectors drive infrastructure requirements
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When commercial solutions are not enough...

⚫ MicroMAX beamline expects 10⁴ photons/pixel/10μs:
→ requires a charge integrating detector

⚫ JungFrau 1M on loan from PSI: preparation of DAQ scheme, understand 
and characterise detector

⚫ 4M JungFrau array being planned

⚫ Strong interest in developing coherent techniques such as X-ray Photon Correlation Spectroscopy (XPCS) → 
requires time resolution

⚫ Planning to loan a Timepix3-based TRISTAN 1M from DLS this year to run a demonstration XPCS experiment at 
the NanoMAX beamline 

⚫ Soft X-ray XPCS a further challenge (photon counting in general for soft X-rays)

⚫ → exploring collaboration with Mid Sweden University and Uppsala University on development of small pixel 
sized LGADs for readout wit Timepix3 or Medipix3 





⚫ HPCs

⚫ 3x Dectris Eiger2 4M, 3x Eiger1 1M, 1x Eiger1 16M

⚫ 1x Dectris Pilatus3 2M, 1x Pilatus2 1M

⚫ 1x Dectris Pilatus3 2M (WAXS L-shaped)

⚫ 1x XSpectrum Lamdba 3M (WAXS centre hole)

⚫ 1x Dectris Mythen

⚫ 1x QD Merlin Quad

⚫ sCMOS

⚫ Numerous Andor Zyla, 1x Andor Balor

⚫ 1x Tucsen “DhyanaX” (NB: Adapted for vacuum following Soleil)

⚫ Spectroscopy

⚫ 2x Amptek XR-100 SDD via QD Xspress3

⚫ 2x Rayspec SDD via QD Xspress3

⚫ 1x Canberra/Mirion 7 element SDD / HPGe via QD Xspress3

⚫ 1x Rayspec SDD Xia FalconX

Commercial detectors



Flux

Rate



Direct

HPC

Medipix+MCP

Indirect

CMOS



Control and DAQ example: Pilatus 

● Tango: based on actor model
– Protocol

– API

– tools

●Devices: standard interface to 
systems

– state

– commands

– attributes
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Webjive / Taranta

● Taranta: a web application 
to interact with Tango devices.

● Access to properties and 
commands (Webjive)

● Customizable dashboards:

– Charts, indicators, dials...
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CMOS and sCMOS cameras

⚫ sCMOS = “scientific CMOS”, next generation fabrication method, less 
noise and higher frame rates (NB still not very fast for us – 10s of Hz / fps)

⚫ Also generally known as Active Pixel Sensors (APS)

⚫ Operating principle:

- each pixel is a photo diode

- incident photon generates electron-hole pairs

- electrons accumulated in a potential well

- each pixel does its own digitisation (faster than CCDs)

⚫ (s)CMOS cameras are fundamentally charge integrating not photon 
counting:

- Signal proportional to sum of photon energies.

- Noise sources such as dark current are also included in the integral

- Counter is arbitrary scale (requires calibration)



CMOS and sCMOS cameras
Reference parameters:

• - “noise” (dark noise and read noise components)

• - pixel well depth: how much charge can be accumulated in 
each pixel

• - dynamic range = ratio of well depth to noise (i.e. brightest to 
just discernible)

Direct/indirect :

• (s)CMOS cameras are sensitive to photons in the visible range. X ray 
photons are detected “indirectly”, with some scintillator first 
generating visible light (e.g. the phosphor coating on the Andor Zyla 
camera at Softimax).

• May be front or back illuminated – back illuminated gives higher 
efficiency as incident photons do not first have to pass through the 
circuitry (e.g. Dyhana camera at Softimax)



Hybrid Photon Counting Detectors (HPCs)

⚫ Principle: separate high resistivity 
sensor (direct detection of X-ray 
photons with high efficiency) from 
low resistivity CMOS electronics 
(ASICs for signal processing, storage 
and output)

⚫ Readout electronics process each 
single X-ray photon

⚫ Final output is a photon count in 
each pixel

⚫ (Dynamic range simply = counter 
depth now)

⚫ Fast, so high frame rate (to kHz 
range)

Separate high resistivity sensor 
(direct detection) from low 
resistivity CMOS electronics 



ASICs for HPCs

● Basic role of ASIC:

− Amplify detected charge

− Compare to threshold

− Increment counter

● ASICS/sensors typically combined in modules to give larger areas

● Main players at MAX IV in hard X ray region, approx 5-40keV:

● Pilatus (PSI/Dectris)

− Pilatus1 originated from CERN CMS collaboration via PSI

− Pilatus2 PSI/Dectris: 497x192 pixels, 172μm square, 20 bit 
depth counter

− Pilatus3 increases max count rate with retriggering feature 
(++counter if over threshold for extended period),  

Medipix3 (CERN) 



Photon Counting pros and cons

+ The threshold is set above the electronics noise so long acquisition 
times with “zero noise” are possible

+ Linear behaviour over the entire dynamic range as long as the 
counter depth is sufficient.

+ High frame rate up to kHz

+ Can swap Si for some other material more efficient at high energy

- Limit on incoming flux, say 1x10⁷ photons/pixel/s (no such limit if 
charge integrating)  (counting may not be linear with incoming flux)

- Charge sharing means photons lost at pixel corners (set threshold 
to be half the energy so that on boundary photon is counted in one 
pixel or the other)

- Relatively large pixel size (~10x) compared to CMOS cameras



HPC examples – Dectris Pilatus 3

⚫ e.g. 2M example at DanMAX, CoSAXs
to receive another this year

⚫ Max frame rate 500 Hz at 20 bit

⚫ 0.94ms readout time between frames

⚫ Max incoming flux 1x10⁷ 
photons/pixel/s

⚫ Comes with a dedicated Detector 
Control Computer (DCU) 

⚫ Writes image data to files on DCU

Our DAQ: open image files and stream out 
over ZMQ to DAQ cluster

⚫ Count rate (max flux) increased over 
Pilatus2 via retriggering feature



Tango: webJive
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Lambda "windmill" control scheme
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Control and DAQ example: Pilatus 
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Experiment Orchestration with SARDANA
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SCAN ORCHESTRATION

START DATA RECORD

PREPARE EQUIPMENTS

DATA ACQUISITION

RUN PRE-SCAN HOOKS

END DATA RECORD

RUN POST-SCAN HOOKS

SYNCHRONIZATION

peristaltic pump

detector



Contrast based acquisition system

Official KITS support42


