

### Detectors at MAX IV

M. Cascella

MAX IV, Detectors and Scientific Software group



# **Summary**

### • Overview

- Facility status
- Detector etc. group
- Detector/camera technologies
- Detector test and calibration
- DAQ and control systems
  - Slow control (Tango)
  - Data acquisition
  - Storage





### **Overview**

- 3 GeV and 1.5 GeV storage rings
- full energy linac with Short Pulse Facility
- First beamline user operation 2016, now 11 beamlines in operation, 5 in commissioning, photon energies from 275 eV to 40KeV





# **Detectors and Scientific Software Group**

- approx 50% det and 50% sci-sw
- Detectors half
  - Advise beamlines during procurement
  - Liaise with companies
  - Site Acceptance Tests + characterization and performance
  - Trouble shooting and updates
  - Work with rest of KITS on control and DAQ integration
  - Bring in non-commercial solutions





# **DETECTOR TECHNOLOGY**



## **Pixel detector requirements**

Typical (competing) requirements 2D detectors must satisfy:

- Provide good spatial resolution (100 5 um)
- Handle high incoming flux (~1E9 photons/s/mm<sup>2</sup>)
- Allow high frame rate (kHz)
- Suitable energy range (1 to 40 KeV )
- Provide high dynamic range (12 32 bits)

Spectroscopy detectors and delay lines are left for a future meeting



## **Pixel Area Detectors**

- General term for any pixelated solid state 2D X-ray photon detector
- Can use direct or indirect detection and be photon counting or charge integrating

**Direct** - hybrid detectors (separate sensor and electronics) - X-ray photons deposit their energy in the detector material (e.g. Si) directly **Indirect** - eg sCMOS cameras for visible range - first a conversion is needed from X-rays to visible light (phosphorus) or electrons (MCP)





# **Pixel Area Detectors**

**Charge Integrating** - energy of the detected photons integrated over an exposure time.

- + Can accept high incoming flux
- Information contained in the energy of the individual photon is lost
- Noise sources such as dark current are included in the integral
- Limited dynamic range (saturation), multiple Charge sharing means photons lost at pixel gains required

**Photon counting** - readout electronics processes each single X-ray photon.

- + Threshold(s) allow noise free acquisition (any exp.)
- + Linear behaviour over the entire dynamic range as long as the counter depth is sufficient.
- Limited by incoming flux

corners



Direct detection + photon counting  $\rightarrow$  hybrid photon counting detectors (HPCs) = current standard

# **Technologies**

Come in several different types, e.g.:

- (s)CMOS "cameras" (Andor Zyla, Tucsen Dhyana...)
  - usually require conversion (works with soft x-ray)
  - charge integrating  $\rightarrow$  no limit on incoming flux
  - sCMOS is "low noise" but not zero ( $\rightarrow$  dark current)
  - limited frame rate (~10s of Hz)
  - small pixels
- Hybrid Pixel (or Photon) Counting (HPC) detectors (Eiger, Pilatus, Medipix...)
  - zero noise
  - high frame rate
  - hard X rays only (> ~4 KeV)
  - non-linearity at high flux (count rate)
  - pixel edge effects





# HPC examples – Dectris Eiger & Eiger2

- Several examples at MAX IV, both Eiger and Eiger2
- 500Hz max frame rate (E2-4M)
- Eiger: 3ms dead time, max 10<sup>6</sup> photons/pixel/s
- **Eiger2**: "continuous readout" (double counters), max 10<sup>7</sup> photons/pixel/s (retriggering)
- Two energy thresholds per channel
- http interface for control, data written to DCU or streamed via ZMQ.
- Throughput 1GB/s (E2-4M)





# **DETECTOR CALIBRATION**



### **HPC Site Acceptance Test- Custom X-Spectrum Lambda**

Medipix3: CERN technology commercialized via research-industry consortium

- 4 X-Spectrum modules in "windmill" pattern with center hole
  - 4x 750Kpx modules = 3Mpx
  - 2X DCU working in parallel
- 55 µm pixel pitch
- E > 5 KeV
- 12bit, 2kHz (faster with smaller counter) → 4x 18GB/s





### HPC Site Acceptance Test- Custom Xspectrum Lambda

- Flat field correction
  - Subtract beam profile to estimate deviations
- Signal to noise ratio
  - (Mean)/(std dev) ≈  $\sqrt{N}$
- Threshold scan
  - $-\Delta E / \Delta thrs$
  - Width of peak gives thrs. dispersion

Flat field correction







### sCMOS Site Acceptance Test – Hamamatsu Orca



- 5.5µm pixel pitch, 12 Mpx
- 120Hz max at 12 bit = 2 GB / s data rate
- Readout to frame grabber card is 4 lane CoaXPress
- To be used for tomography station

EMVA 1288 test

- Exposure scan with uniform illumination OR fix exposure and vary light intensity
- Let you determine:
  - Gain (ADC / e-)
  - Full well capacity
  - Linearity
  - SNR  $\rightarrow$  Dynamic range
  - Analysis is 90% automatic



### sCMOS Site Acceptance Test – Hamamatsu Orca



## **Non-commercial example: JUNGFRAU**

- Direct detection CMOS for SwissFEL
- Charge integrating, multi gain, 1.1KHz
- 4Mpx detector planned for MicroMAX
- Pixel to pixel calibration using single photons







# **Other non-commercial solutions**

### • Tristan

 1Mpx, Timepix3 based; developed at Diamond

### • Dhyana

- commercial back-illuminated sCMOS, sensitive to Xrays
- Adapted for vacuum
- Full speed Timepix3 readout R&D
  - With Sunsval





# **CONTROL SYSTEMS**



# **MAX IV DAQ flow scheme**





# **Typical detector device**

- Devices: standard interface to systems
  - state
  - commands
  - attributes
- Uniform interface to wildly different detectors
  - Space for det specific properties
- Can be used directly or as ground layer for orchestration

#### RUNNING b318a-ea01/dia/dhyana

| Server | Properties                      | Attributes | c                 | Commands                                                                                   | Logs                                                                                                 |   |
|--------|---------------------------------|------------|-------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|
| SCAL   | AR                              |            |                   |                                                                                            |                                                                                                      |   |
| VALID  | DestinationFilenar              | ne         | Can <sup>th</sup> |                                                                                            |                                                                                                      | 0 |
| VALID  | ExposureTime                    |            | Can b             | 0.4999904                                                                                  |                                                                                                      | 0 |
| VALID  | ReadoutTime                     |            |                   | 0.043                                                                                      |                                                                                                      | 0 |
| VALID  | State                           |            |                   | RUNNING                                                                                    |                                                                                                      | 0 |
| VALID  | Status                          |            |                   | *ARMED* an<br>- Dhyana (A<br>- Recorder *<br>Running in c<br>data will not<br>(Temp. Statu | m succeeded<br>cquirer) *RUNNING*<br>ACQUIRING*<br>continuous mode. The<br>be saved.<br>is: 20.0625) | 8 |
| VALID  | Temperature                     |            | <b>S</b>          | 19.9375                                                                                    |                                                                                                      | 0 |
| VALID  | TriggerMode at co<br>user level | mmon       | <b>Gall</b>       | INTERNAL                                                                                   |                                                                                                      | 0 |
| VALID  | UserImageAppend                 | xik        | <b>S</b>          |                                                                                            |                                                                                                      | 0 |
| VALID  | nFramesAcquired                 |            |                   | 71                                                                                         |                                                                                                      | 0 |



### **Summary**

- Range of energies x range of requirements = range of detectors
  - sCMOS and HPC
  - Commercial vs research
  - ...
- Detector specific DCU + standardized DAQ and control
- Detectors drive infrastructure requirements





### When commercial solutions are not enough...

- MicroMAX beamline expects 10<sup>4</sup> photons/pixel/10µs:
  → requires a charge integrating detector
- JungFrau 1M on loan from PSI: preparation of DAQ scheme, understand and characterise detector
- 4M JungFrau array being planned



- Strong interest in developing coherent techniques such as X-ray Photon Correlation Spectroscopy (XPCS) → requires time resolution
- Planning to loan a Timepix3-based **TRISTAN** 1M from DLS this year to run a demonstration XPCS experiment at the NanoMAX beamline
- Soft X-ray XPCS a further challenge (photon counting in general for soft X-rays)
- → exploring collaboration with Mid Sweden University and Uppsala University on development of small pixel sized LGADs for readout wit Timepix3 or Medipix3





# **Commercial detectors**

#### • HPCs

- 3x Dectris Eiger2 4M, 3x Eiger1 1M, 1x Eiger1 16M
- 1x Dectris Pilatus3 2M, 1x Pilatus2 1M
- 1x Dectris Pilatus3 2M (WAXS L-shaped)
- 1x XSpectrum Lamdba 3M (WAXS centre hole)
- 1x Dectris Mythen
- 1x QD Merlin Quad
- sCMOS
  - Numerous Andor Zyla, 1x Andor Balor
  - 1x Tucsen "DhyanaX" (NB: Adapted for vacuum following Soleil)
- Spectroscopy
  - 2x Amptek XR-100 SDD via QD Xspress3
  - 2x Rayspec SDD via QD Xspress3
  - 1x Canberra/Mirion 7 element SDD / HPGe via QD Xspress3
  - 1x Rayspec SDD Xia FalconX







# **Control and DAQ example: Pilatus**

- Tango: based on actor model
  - Protocol
  - API
  - tools
- Devices: standard interface to systems
  - state
  - commands
  - attributes





# Webjive / Taranta

- Taranta: a web application to interact with Tango devices.
- Access to properties and commands (Webjive)
- Customizable dashboards:
  - Charts, indicators, dials...



| Devices Dashboards 🔎                                       |                                  |                                                                                                                                                                                               | 1.3.1 miccas Log Out |
|------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| zyla                                                       | STANDBY b318a-ea01/dia/an        | ndor-zyla-01                                                                                                                                                                                  |                      |
| b318a-ea01<br>dia                                          | Server Properties Attribu        | butes Commands Logs                                                                                                                                                                           |                      |
| andor-zyla-01                                              | andor3_camera_type               | Zyla                                                                                                                                                                                          |                      |
|                                                            | andor3_control_port              | 22000                                                                                                                                                                                         |                      |
|                                                            | andor3_data_port                 | 22001                                                                                                                                                                                         |                      |
|                                                            | andor3_host                      | b-softimax-cams-0                                                                                                                                                                             |                      |
|                                                            | andor3_meta_port                 | 22002                                                                                                                                                                                         |                      |
|                                                            | CycleMode                        | Fixed                                                                                                                                                                                         |                      |
|                                                            | daq_host                         | softimax-xzyla-andor3-daq.daq.maxiv.lu.se                                                                                                                                                     |                      |
|                                                            | daq_port                         | 80                                                                                                                                                                                            |                      |
|                                                            | k8s_hostname                     | softimax-xzyla-andor3                                                                                                                                                                         |                      |
|                                                            | Overlap                          | True                                                                                                                                                                                          |                      |
|                                                            | PixelEncoding                    | Mono16                                                                                                                                                                                        |                      |
|                                                            | PixelReadoutRate                 | 280 MHz                                                                                                                                                                                       |                      |
|                                                            | SimplePreAmpGainControl          | 16-bit (low noise & high well capacity)                                                                                                                                                       |                      |
| Devices Dash                                               | boards 🔎 🕜 Edit 🛛 Dhyana control |                                                                                                                                                                                               |                      |
| 20.1<br>20<br>19.9<br>19.8<br>19.7<br>19.6<br>19.5<br>19.4 | E8-ea01/dia/dhyana/temperature   | b318a-ea01/dia/dhyana RUNNING<br>Exposure ExposureTime: 0.05<br>ReadoutTime: 0.04<br>sdkGlobalGain:<br>sdkBitOfDepth: 16<br>nTriggers: 1001<br>DestinationFilename: /data/staff/softimax/tes! |                      |
| Arm                                                        | Stop                             | TriggerMode at common user level: Dropdown - Submit                                                                                                                                           |                      |
| Continuo                                                   | IS HardReset                     | TriggerMode at common user level: SOFTWARE                                                                                                                                                    |                      |
| Software                                                   | rigger nFramesAcquired: 905      | 5                                                                                                                                                                                             |                      |



# **CMOS and sCMOS cameras**

- sCMOS = "scientific CMOS", next generation fabrication method, less noise and higher frame rates (NB still not very fast for us – 10s of Hz / fps)
- Also generally known as Active Pixel Sensors (APS)
- Operating principle:
  - each pixel is a photo diode
  - incident photon generates electron-hole pairs
  - electrons accumulated in a potential well
  - each pixel does its own digitisation (faster than CCDs)
- (s)CMOS cameras are fundamentally charge integrating not photon counting:
  - Signal proportional to sum of photon energies.
  - Noise sources such as dark current are also included in the integral
  - Counter is arbitrary scale (requires calibration)



# **CMOS and sCMOS cameras**

#### **Reference** parameters:

- "noise" (dark noise and read noise components)
- **pixel well depth**: how much charge can be accumulated in each pixel
- **dynamic range** = ratio of well depth to noise (i.e. brightest to just discernible)

#### Direct/indirect :

- (s)CMOS cameras are sensitive to photons in the visible range. X ray photons are detected "**indirectly**", with some scintillator first generating visible light (e.g. the phosphor coating on the Andor Zyla camera at Softimax).
- May be **front** or **back illuminated** back illuminated gives higher efficiency as incident photons do not first have to pass through the circuitry (e.g. Dyhana camera at Softimax)





# **Hybrid Photon Counting Detectors (HPCs)**

- Principle: separate high resistivity sensor (direct detection of X-ray photons with high efficiency) from low resistivity CMOS electronics (ASICs for signal processing, storage and output)
- Readout electronics process each single X-ray photon
- Final output is a photon count in each pixel
- (Dynamic range simply = counter depth now)
- Fast, so high frame rate (to kHz range)

Separate high resistivity sensor (direct detection) from low





# **ASICs for HPCs**

- Basic role of ASIC:
  - Amplify detected charge
  - Compare to threshold
  - Increment counter



- ASICS/sensors typically combined in modules to give larger areas
- Main players at MAX IV in hard X ray region, approx 5-40keV:
- Pilatus (PSI/Dectris)
  - Pilatus1 originated from CERN CMS collaboration via PSI
  - Pilatus2 PSI/Dectris: 497x192 pixels, 172µm square, 20 bit depth counter
  - Pilatus3 increases max count rate with retriggering feature (++counter if over threshold for extended period),

# **Photon Counting pros and cons**

+ The threshold is set above the electronics noise so long acquisition times with "zero noise" are possible

+ Linear behaviour over the entire dynamic range as long as the counter depth is sufficient.

+ High frame rate up to kHz

+ Can swap Si for some other material more efficient at high energy

- Limit on incoming flux, say 1x10<sup>7</sup> photons/pixel/s (no such limit if charge integrating) (counting may not be linear with incoming flux)

- Charge sharing means photons lost at pixel corners (set threshold to be half the energy so that on boundary photon is counted in one pixel or the other)

- Relatively large pixel size (~10x) compared to CMOS cameras

# **HPC examples – Dectris Pilatus 3**

- e.g. 2M example at DanMAX, CoSAXs to receive another this year
- Max frame rate 500 Hz at 20 bit
- 0.94ms readout time between frames
- Max incoming flux 1x10<sup>7</sup> photons/pixel/s
- Comes with a dedicated Detector Control Computer (DCU)
- Writes image data to files on DCU

Our DAQ: open image files and stream out over ZMQ to DAQ cluster

 Count rate (max flux) increased over Pilatus2 via retriggering feature



## Tango: webJive





### Lambda "windmill" control scheme





## **Control and DAQ example: Pilatus**





# **Experiment Orchestration with SARDANA**









# **Contrast based acquisition system**

