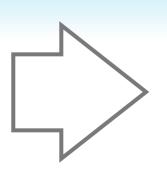


HIGH POWER HADRON ACCELERATORS

Mamad Eshraqi 2015 June 1-2

Sponsored by EuCARD2 WP5 (XBEAM), a project supported by European Commission under the Capacities 7th Framework Programme, Grant Agreement 312453.


ESS

Design Drivers:

High average beam power
High peak beam power
High availability

5 MW 125 MW >95 %

Key parameters:

Energy 2.0 GeV

Current 62.5 mA

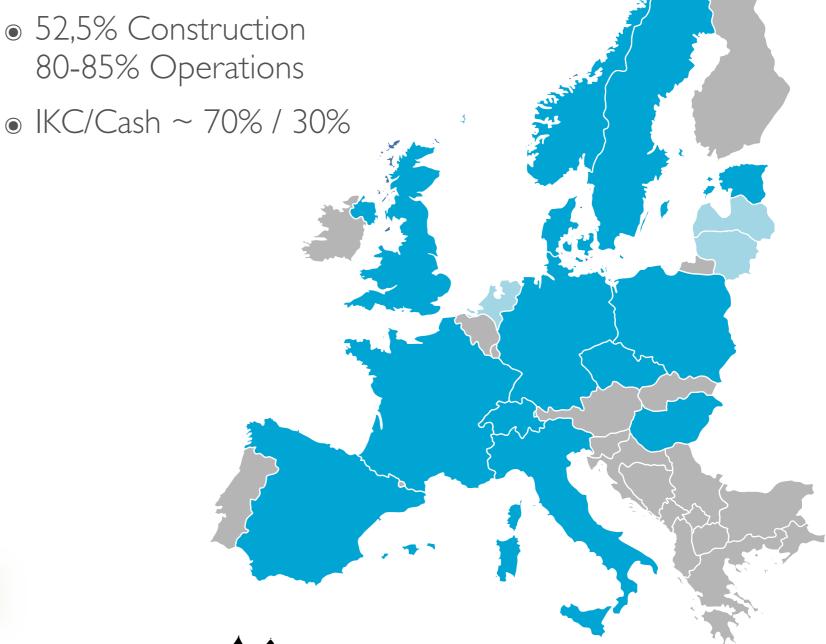
Repetition rate 14 Hz

Pulse length 2.86 ms

Losses < I W/m

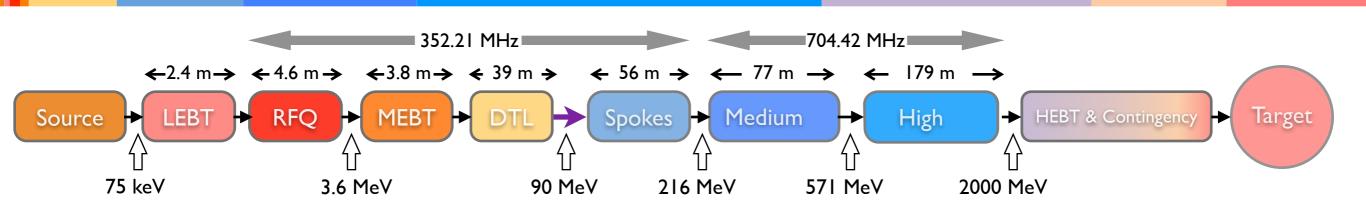

lons: p

Flexible/Upgradable design Minimize energy consumption



- ▶ Sweden and Denmark:
 - 47,5% Construction 15-20% Operations
 - Cash ~100%

▶ Partner Countries:


 52,5% Construction 80-85% Operations

ESS PARAMETERS

	Length	No. Cavs	No. Magnet	No. Steerers	β	No. Sections	Power (kW)	
LEBT	2.38		2 Solenoids	2 × 2				
RFQ	4.6						1600	
MEBT	3.83	3	II Quads	10 × 2			15	
DTL	38.9	5	PMQs	15 × 2		5	2200	
LEDP + Spoke	55.9	26	26 Quads	26	0.50	13	330	
Medium Beta	76.7	36	18 Quads	18	0.67	9	870	
High Beta	178.9	84	42 Quads	42	0.86	21	1100	
Contingency + HEDP	130.4		32 Quads	32	(0.86)	15		
DogLeg	66.2		12 Quads + 2 Dipoles	14				
A2T	46.4		6 Quads + 8 Raster					

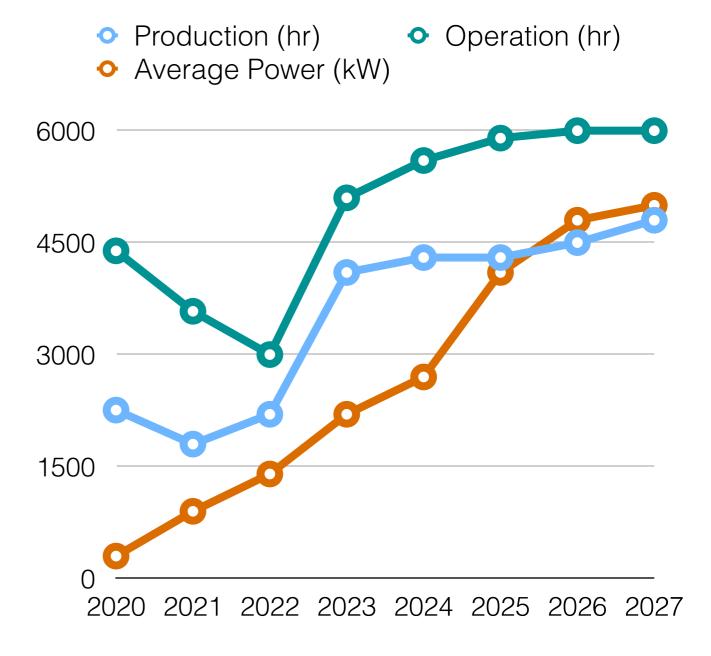
SCHEDULE

MASTER SCHEDULE - WP02 COMMISSIONING

MILESTONESs

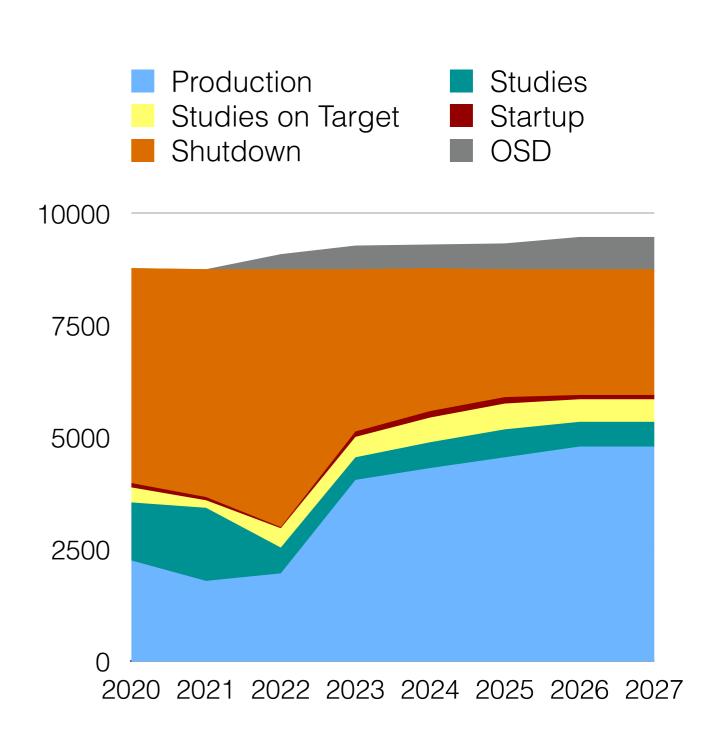
INSTALLATION AND COMMISSIONING

																INSTALLATION AND COMMISSIONING																	
		20	14		2015 20					2016			2017			2018				2019				2020					2021		2022		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3 Q4	۱ Q	1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q	3 Q4	Q1 Q	2 Q3	Q4
CFMS						EARL	Y ACCE 7-00	SS T0 CT-20	O GALL 16	ERY		_	\bigvee	F	ULL A	CCESS 2-MAY	TO T	TUNNE 7	EL				FIRST	PRO 28-J	ΓONs (IUNE-2	ON TA 2019	ARGE"	Т	CA	PABILI 23-SE	ΓΥ for 2 G PT-2022	eV _	
ISrc & LEBT											 			-		Isr &	LEB	BT instal	lled						000000000000000000000000000000000000000								
RFQ											 		I					RI	FQ ins	talled					***************************************						J. J		
MEBT											 		 			_	\langle	ME	BT inc	dtalled	1				***************************************						CAL STOP		
DTL										-	. DTL	 .4 insta	alled i									DT	L5 ins	stalled	. RFI						TECHNIC		
SPOKE										FI	RST S	 SPK in:	stalled								LAS	Г SPK	insta	lled				Ē	4		=		
MB							FIRST MB CM installed LAST MB CM in									CM inst	talled																
HB											 																	1-11	HB		12-21 H	В	
RF												INSTALLATION PHASE 1 RF SYSTEM										1			INST	ALLA'	TION	I PHA	SE 2 RF	SYSTE	M		
BEAM COMMISS.															EN	D COM	IMIS (exclu	SSIONIN uding D	NG NC TL5)			←	SPK TO I	COMN & ME DUMP	3	T	ID CO 1-11 F O DU O TAR	HB JMP			END CON 12-21 H TO DUN TO TARC	B IP	


DATA EXTRACTED BY P6 PLANNING - APRIL 2015

PREPARED BY M. ESHRAQI, L. LARI CHECKED BY J. WEISEND APPROVED BY M. LINDROOS

EUCARD²RAMP UP MILESTONES

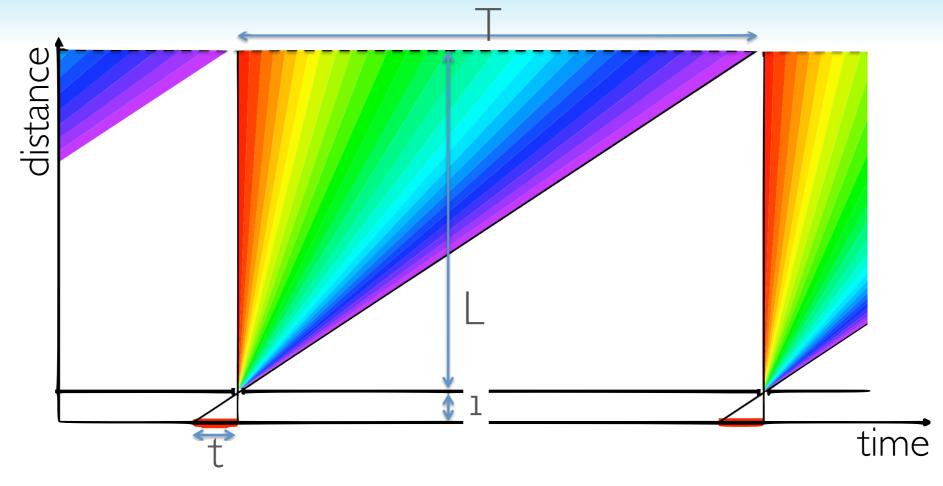

- The planned (annual averaged) power ramp up increases monotonically from ~300 kW in 2019 to 5 MW in 2026.
- The power could be adjusted through changing the energy, beam current, pulse length and repetition rate.

EUCARD² OPERATION HOURS

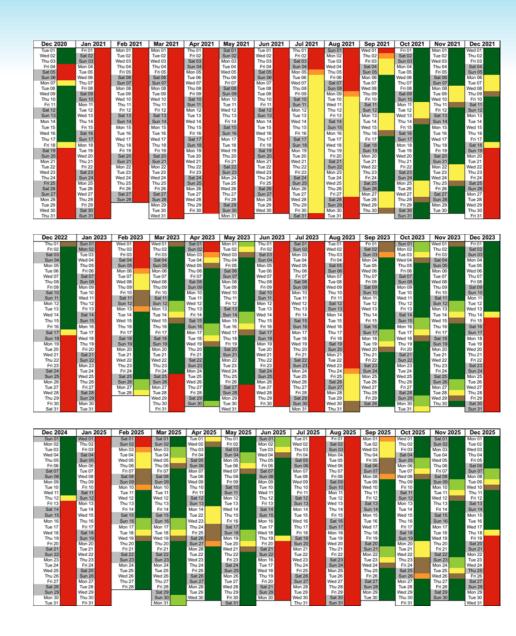
- Two long shutdowns are foreseen for years 2021 and 2022, permitting the installation of high beta cryomodules in two phases.
 - In phase one the beam energy can reach 1370 MeV by installing 11 high beta cryomodules
 - In phase two the accelerator is fully installed and can bring the beam energy to 2 GeV

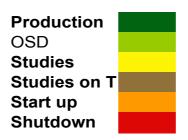
RAMP UP

- Initially the cavities are ramped to their nominal (maximum possible), gradient to reach the max energy
- After a period of test the current will be increased to check the sensitivities to space charge and losses as a function of that
- Finally the rep rate is raised to increase the power


Duty Cycle
 Current
 Energy

DUTY CYCLE




- Instruments require the full pulse length, however, one wants to ramp up the power gradually
- most efficient way is to ramp the rep rate instead of beam current

EUERPSTRUCTION TO OPERATION

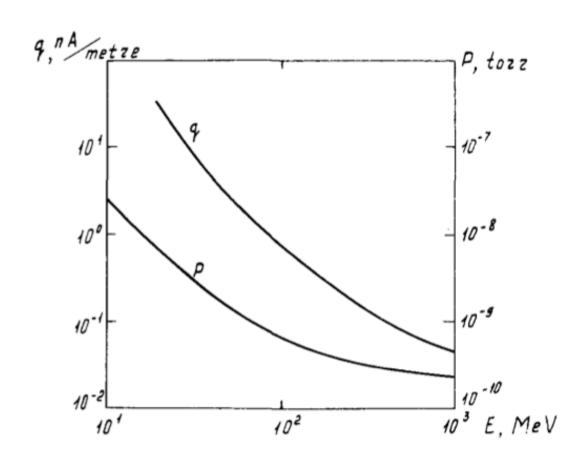
AVAILABILITY

- How high availability affects losses
 - A defined number operating hours
 - Samples / Users
 - Fast repair and maintenance requirement
 - Activation of the components
 - Cool down time and hands-on maintenance

- ING: Intense Neutron Generator, 65 MW (1968)
- APT: Accelerator Production of Tritium, 200 MW (1991)
- CONCERT: A High Power Proton Accelerator Driven Multi-Application Facility, 25 MW (2000)
- ISIS: ______, 350kW (1980)
- SNS: Spallation Neutron Source, I MW (1993) [PSS]
- IFMIF: International Fusion Materials Irradiation Facility, 10 MW (1994)
- ESS: European Spallation Source, 5 MW (1988)

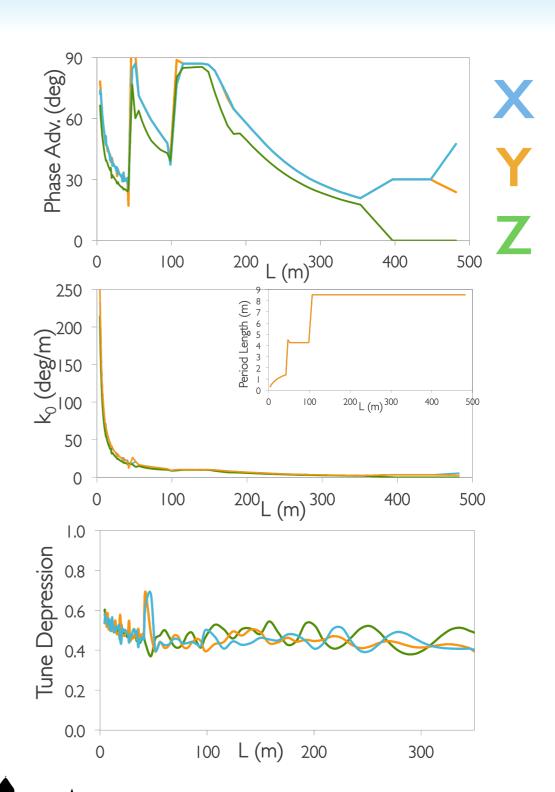
POWER

- At 5 MegaWatt:
 - 14 pulses a second
 - ▶ Has the same energy as a discus (2 kg) flying at ~2150 kph (Mach 1.76)
 - Has the same energy as a I ton car which travels at ~IIO kph
 - Or you can melt +8 (+5) kg of copper (niobium) starting from room temperature



LOSSES

- "The linac can be considered as radiation-free, provided that the gamma dose at one-metre distance from the linac does not exceed the professional dose of 28 µGy/hr one hour after the linac has been stopped after a long operation" A. P. Fedotov
 - This translates to few tens of a watt/meter
- This value could be relaxed by looking at the linac few hours after such a shutdown, maybe that is where this I W/m comes from!


RULES OF THUMB

• Phase advance per period < 90 degrees

• Smooth average phase advance

Avoiding strong tune depression

- Ion source: current stability
- RFQ: Phase and amplitude stability
 - The phase of the linac is dictated by RFQ

• Errors in phase and amplitude and static errors in the rest of the linac

LLRF FOR LLRF

- Phase and amplitude error in RFQ causes beam arrival error in the rest of the linac
 - This adds/creates additional errors to be compensated(?) by the LLRF
 - This adds to the power needed by the buncher cavities (if not compensated)
 - ▶ Since buncher cavities work at -90° (quadrature wrt beam), the power needed by this cavities in only to compensate the ohmic losses. A shift in the arrival time adds to the load.

APT REVIEW

- Transient behaviour of the linac is an issue that needs further study.
- A heavily beam loaded accelerator operating at such high power can only be operated with a complex set of sensors and multiple, interacting feedback and feedforward control loops.
- In particular, start-up and recovery from safety trips or routine klystron trips

SUMMARY

- We are entering the era of operational high power accelerators, where beam losses should be controlled to few parts in 10E7.
- This is mainly caused by high availability demanded by users of this machines.
- Though a robust beam physics design could reduce the risk of beam losses, with such high power machines the LLRF is as important and plays a major rule in the success of the accelerator.

