

Klystron modulators for ESS Development status by Oct. 2015

Carlos A. Martins
ESS – Accelerator Division - RF Electrical Power Systems
www.europeanspallationsource.se
October 15th, 2014

Summary

- The Modulator development and procurement strategy: Recall;
- 2. Situation of the commercial 330kVA modulator prototype development Ampegon contract;
- 3. Situation of the commercial 330kVA modulator prototype development CEA DTI/SigmaPhi contract;
- 4. Situation of the Reduced Scale prototype development (SML Modulator) ESS;
- 5. Comparison of the three topologies (prototypes) in terms of:
 - a) Modularity versus monolithic;
 - b) Scalability to higher power levels (i.e. more klystrons per modulator);
 - c) Reliability;
 - d) Cost;
 - e) Volume/footprint and quantity of oil required;
 - f) Pulse quality (rise time, flat-top accuracy, efficiency);
 - g) AC grid power quality (flicker, harmonic distortion, power factor);

1. Development and procurement strategy for ESS modulators (RFQ, DTL and Medium Beta)

Strategy	Rated power	Ready/De livery of prototype	Validated	Decision point	Outcome
A – SML (ESS internal development)	660 kVA (4 klystrons 704MHz in parallel)	Dec 2015	Jan 2016	If A: SML fully validated, Q1 2016 If B: Sept 2016	Strategy A: Launch call for tender for 660kVA modulators: - 3 units for RFQ + DTL; - 9 units for medium beta; - Total cost: ~ 12 M€ Strategy B: Launch call for tender for 330kVA modulators: - 6 units for RFQ + DTL; - 18 units for medium beta; - Total cost: ~ 18 M€
B:1- Ampegon (ESS contract)	330 kVA (2 klystrons 704MHz in parallel)	May 2016	Fall 2016		
B:2 – DTI/SigmaPhi (CEA contract)	330 kVA (2 klystrons 704MHz in parallel)	Jan 2016	Mid 2016		

2. Situation of the commercial 330kVA modulator

prototype development – Ampegon

AMPEGON AG

Resonant capacitors (x32'256)

HV rectifier bridges based on Diodes (x 5'184) and resonant capacitors (x 31'104)

H-bridge inverters based on MOSFET's (x 720)

EUROPEAN

SPALLATION

Electrolytic capacitors (x 108)

Klystron Modulators for ESS

Carlos A. Martins – ESS, Accelerator Division, RF Group

HVHF transformers (x 36)

2. Situation of the commercial 330kVA modulator prototype development – Ampegon contract

Main observations:

- TDR V1 was not approved. Main reasons were:
 - 1)- **HVHF transformer design could not work** (2 cm clearance in oil not enough; creapage distance not enough, no anti-corona rings). **Corrected in V2** (3 cm clearance, 8mm anti-corona rings added, creapage distance improved;
 - 2)- Type of main capacitors used (electrolytic) not compliant with the specifications (polypropylene film).
 Not changed in V2;
 - 3)- Reliability analysis has shown a typical MTBF of ~5'000h, therefore not compliant with the specifications (70'000h). Changed to >50'000h in V2 without any justification (no design changes could justify this increase);
 - 4)- Tolerance of the components (SMD capacitors) would generate prohibitive ripple in the pulse flat-top. Changed to a better circuit implementation in V2;
- Topology is complex and requires too many components and interconnections (750 MOSFETS with drivers, 60'000 SMD capacitors, 5'000 diodes, 108 electrolytic capacitors, 72 fans, 72 fuses, 32 HVHF transformers, ...);
- Choice of topology, design of components and control algorithms done up-to ~80% extent by University of Zurich. Photos and schematics from existing publications in the TDR (authors from Univ. Zurich only);
- Delays in the construction :
 - HVHF transformer could not withstand the High Voltage, due to corona discharges on the insulators (3D printed !!!). Redesign with a different type of insulator material in progress.

2. Reliability Analysis (RAMI) by Enric Bargalló, using MIL-HDBK

8

2

Redundancy scheme taken into account (still needs to be demonstrated in practice)

- 36 modules (4 branches of 9 modules each)
- 4 redundant modules have been added;
- modules go by pairs: if one module fails, another from another branch has to be deactivated (actually, redundant modules are only 2

	\vdash	
e	7	
	9	
y 2)	2	
	\vdash	
	4	
	\vdash	
	\vdash	
	6	
	\vdash	
	2	
	\vdash	
	-	
	Branch 1 Branch 2	

PM is in all faulty modulators	~ MTBF (1 modulator)	Annual # of failures (1 modulator)	Annual # of failures (66 modulators)
No Preventive Maintenance (PM)	3′180h (specified was 70′000h)	1.52	100.0
PM every year	3′455h	1.27	83.8
PM every half year	4'484h	1.02	67.3
PM every 288h	19'101h	0.26	17.16

3. Situation of the commercial 330kVA modulator prototype development – DTI/SigmaPhi contract

Diversified Technologies Incorporated, DTI

Pulse Transformer (7.4tons; 1'850 liters of oil)

Primary pulse generator (weigth = 5 tons)

3. Situation of the commercial 330kVA modulator prototype development – DTI/SigmaPhi contract

Main observations:

- Topology is very simple, and therefore very reliable (good MTBF);
- However, due to the usage of single/large components (pulse transformer, etc.) the time to repair is considerably high (MTTR), keeping the Availability just reasonable;
- The power quality on the AC grid is not compliant with the relevant international standards (not acceptable for ESS);
- The pulse quality (rise time = 120μs, flat-top accuracy = 0.1%) is good;
- All components (HV switches, pulse transformer, power stacks) are custom made and proprietary (i.e. single source);
- Two oil tanks (1 for capacitor charger, 1 for pulse transformer) instead of one;

4. Situation of the Reduced Scale prototype development (SML Modulator) - ESS Initial plans (up-to Feb 2015)

Part I – Call for tender on a "built-toprint" basis:

- Contract awarded to AQ Elautomatik
 AB (Sweden);
- Successfully delivered on time;
- Successfully tested on resistive loads (@1kV) by Jan 2015;

Contract cancelled in May 2015 Plan B launched in Feb 2015

Part II – Call for tender on a "turn key" basis (design + construction):

- Contract awarded to Ampegon PPT (Germany) in June
 2014 (delivery foreseen for Feb 2015);
- TDR submitted Nov. 2014;
- Company changed administration (CEO) and project main engineer in Dec. 2014;
- Construction started Feb 2015 (delayed);
- Design has changed to 3 times bigger in volume;
- Cost increase claimed to 50% higher;
- Deadline extension claimed to additional 8 months;
- Conflict of interest with Ampegon Switzerland?;

4. Situation of the Reduced Scale prototype development

(SML Modulator) - ESS Plan B (after Feb 2015)

Part II – ESS/LTH design followed by a "build-to-print" contract:

Feb 2015 Detailed design of HV module #1; Construction of HV module #1 prototype at Lund Technical University; Testing of HV module #1 prototype on a resistive dummy load at nominal ratings; ~ 4 months Detailed 3D CAD model of the entire HV oil tank assembly; Write up of technical specifications, Bill Of Materials (BOM) and assembling _____ Mid June 2015 instructions: Launching Invitation To Tender; 2nd July 2015 Return of offers; ______ 16th Sept 2015 Selection of company; ______ 24th Sept 2015 ~ 3.5 months Award of contract

4. SML Modulator – Testing of Part I on resistive dummy loads (Feb. 2015)

4. Modulator test stand at Lund Technical University

Moving, Feb 2015

Small room (30m²), for low power testing

Larger test stand (130m²), for high power testing (160 kVA)

4. SML Modulator – Testing of the HV module #1 on a resistive dummy load, driven by a LV power converter module

Part I – Low voltage power converter

Part II – HV module #1 prototype in oil tank

HV module prototype in assembly workshop at LTH

Experimental results at full power: Pulsed at 20kV/20A, 3.5ms/14Hz (Note: no output filter present; waveforms are as expected)

Magenta: HV output pulse; Yellow: LV input voltage; Green: LV input current

13 Jul 2015 17:09:15

EUROPEAN SPALLATION SOURCE

5. Comparison of the 3 modulator topologies Ampegon | ESS

			Frequency Removal Femal Supply 118 Femal Supply 148 Femal Supply 1490 Femal Supply 1490
Modularity versus monolithic	Too much modular (36 for 330kVA, 72 for 660kVA)	Good modularity level (6 for 330kVA, 6 for 660kVA)	Not Modular / monolithic (1 for 330kVA, 1 for 660kVA)
Scalability to higher power levels (i.e. more klystrons per modulator);	Very poor / impossible (too many small components)	Up-to 660kVA possible (6 modules, reasonable size of modules, larger components)	Very poor / impossible (size of pulse transformer, poor AC power quality)
Reliability / Availability	Extremely poor (too many small components)	Good (reasonable number of components, modular)	Good (lower number of components, however too large)
Total cost for ESS Linac	~ 56 M€	~ 35 M€	~ 50 M€
Weight/footprint and quantity of oil required	Good, if rated for 330kVA	Very good, even when rated for 660kVA	Poor, already when rated for 330kVA (7 tons pulse transformer)
Pulse quality (rise time, flat-top accuracy)	Good (70 μs, 0.2% ?)	Good (105 μs, 0.1% ?)	Good (120 μs, 0.1%)
Efficiency	89 % (theoretical)	> 92% (better if 660kVA)	> 93%
AC grid power quality (flicker, harmonic distortion, power factor);	Good (single cap. charger)	Very Good (3 interleaved cap. chargers)	Poor (6 pulse diode bridge, no active front end)

Spare slides

1. The Modulator development and procurement strategy Recall

Modulators Strategy A (baseline)

- ESS internal development of a new topology (SML Stacked Multi-Level)
- Construction and validation of a Reduced Scale prototype rated for 120 kVA (115kV / 20A, 3.5ms / 14Hz) in collaboration with Lund University (LTH). Can power one 704MHz 1.2MWpk klystron;
- Project has started in June 2013. Completion and demonstration of technology are foreseen for Jan 2016;
- Upgrade to the full scale system 660kVA (115kV / 100A, 3.5ms / 14Hz) is a matter of thermal redesign and selection of higher current components. The full scale modulator is able to power 4x 704MHz 1.2MWpk klystrons in parallel. Straightforward approach with low risks

Modulators Strategy B

- ESS has launched an Invitation To Tender for the design and construction of one 330kVA modulator
 - Contract awarded to Ampegon on June 2014
 - Technical Design Report reviewed in April 2015 (with 6 months delay);
 - Delivery foreseen for May 2016 (with 5 months delay);
 - Soak testing in Uppsala RF test stand, from June to Sept (?) 2016;
- CEA / Saclay has launched an Invitation To Tender for the design and construction of another
 330kVA modulator for their RFQ test stand. It can also serve as a technology demonstrator for ESS
 - Contract awarded to DTI on Oct 2014
 - Delivery foreseen for Jan 2016
 - Soak testing at CEA/Saclay RFQ test stand from January to April(?) 2016