

EUROPEAN SPALLATION SOURCE

Master Module CDR

10th February 2023 Joseph Hindmarsh, STFC Fabio Alves, NSS

Contents

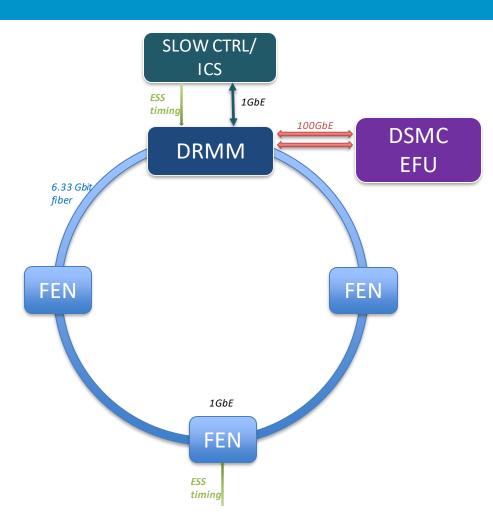
- Overview of the Detector Readout Master Module (DRMM) Functionality and Purpose.
- FPGA Architecture, Resource usage and I/O.
- Product development.
- Readout Master Module Requirements Document.
- Summary of Local Soak and Thermal Stress Testing.

Before we start...

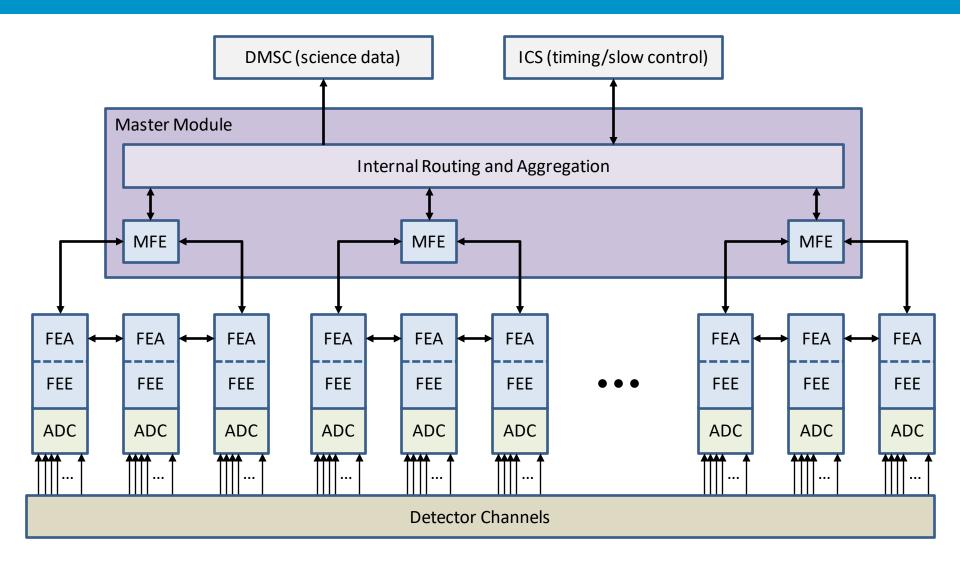
Term	Definition	
ADC	Analog-to-Digital Converter	
ASIC	Application Specific Integrated Circuit	
DMSC	Data Management and Software Centre	
EFU	Event Formation Unit	
EPICS	Experimental Physics and Industrial Control System	
EVR	Event Receiver	
FEBEAC	Front End Back End Assister Card	
FEN	Front End Node	
FEE	Front End Electronics	
FPGA	Field Programmable Gate Array	
MFE	Master Front End	

The Role of Detector Group Readout

- Ensure that the DAQ chain is commissionable, operable and maintainable with minimal resource requirements for the lifetime of the instrument.
- How?
 - Support instruments in the choice and development of readout front ends (digitisers and associated logic).
 - Provision a generic framework for science data, slow control and timing for these front ends.
 - Manage and facilitate the integration of these front ends into this generic readout framework.



Detector Readout Master Module (DRMM) – Requirements - ESS-4184238


APPLICABILITY:

- Acquire data from the "Front End Nodes" (FENs) which interface to the front-end FPGA/ADC/detector chain.
- The connectivity between the Readout Master and the FENs is achieved through 8B/10B encoded MGT-driven (Multi-Gigabit Transceiver) optical fibres links arranged in a ring topology.
- For the slow control interface, the Readout Master instantiates a lightweight UDP stack which communicates with the EPICS IOC (Input Output Controller) using a standard Gigabit Ethernet link.
- The master module shall support an output bandwidth of 200Gb/s utilizing 2 100Gb/s Ethernet links to the EFU.

ESS Readout Architecture

Detector Readout Master Module (DRMM) – Requirements - ESS-4184238

Main requirements:

Logical:

- Data acquisition system common across all ESS instruments.
- Integrate ICS timing, ICS EPICS slow control and Data Egress downstream to DMSC.
- Output bandwidth 2x100Gb/s.
- Data rings to front-end: 12 bidirectional rings (24 fibers).
- Ring connection done through daughter boards interfacing with fibre via SFP connectors. Form factor:

EUROPEAN SPALLATION SOURCE

- Based around VCU118 FPGA (UltraScale+ Architecture) hardware from Xilinx.
- Fits in standard 19" rack.
- Standard Shuko power socket.
- Body of master module forms a self-contained crate, with good EMC protection.

Common Detector Readout

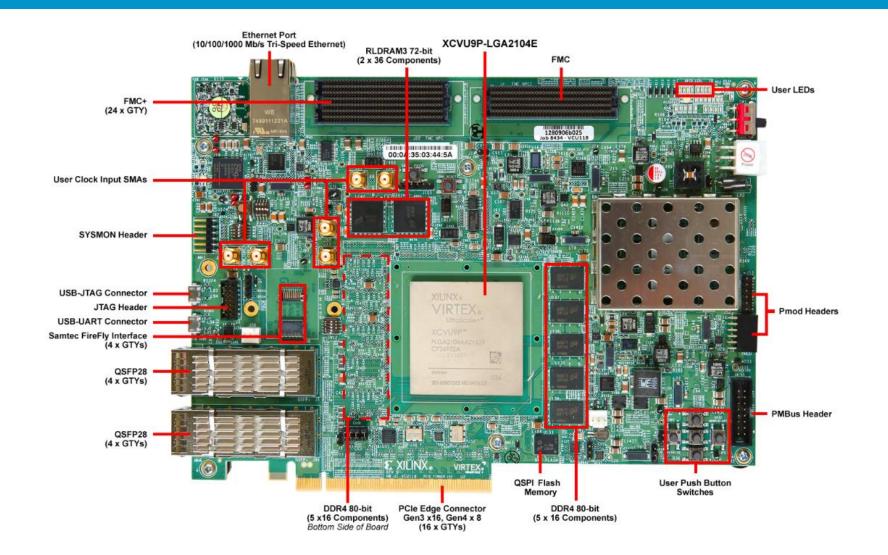
- The readout data is sent over Ethernet as UDP payload which can be as long as 8972 bytes long.
- Maximum transmission unit (MTU) for Ethernet of 9000 bytes.
- The connectivity between the Readout Master and the FENs is achieved through 8B/10B encoded MGT-driven (Multi-Gigabit Transceiver) optical fibres links arranged in a ring topology.
- For the slow control interface, the Readout Master instantiates a lightweight UDP stack which communicates with the EPICS IOC (Input Output Controller) using a standard Gigabit Ethernet link.
- The master module shall support an output bandwidth of 200Gb/s utilizing 2x100Gb/s Ethernet links to the EFU.

FPGA Architecture

- Virtex[™] UltraScale+[™] is a high performance FPGA, using TSMC's 16nm FinFET+ process (16FF+).
- >600 MHz operation.
- Several I/O and transceivers.
- "As the industry's most capable FPGA family, the devices are ideal for compute-intensive applications ranging from 1+Tb/s networking and machine learning."
- XCVU9P

Device Name	VU9P
System Logic Cells (K)	2,586
CLB Flip-Flops (K)	2,364
CLB LUTs (K)	1,182
Max. Dist. RAM (Mb)	36.1
Total Block RAM (Mb)	75.9
UltraRAM (Mb)	270.0
DSP Slices	6,840
Peak INT8 DSP (TOP/s)	21.3
PCle [®] Gen3 x16	6
PCIe Gen3 x16/Gen4 x8 / CCIX ⁽¹⁾	-
150G Interlaken	9
100G Ethernet w/ KR4 RS-FEC	9
Max. Single-Ended HP I/Os	832
Max. Single-Ended HD I/Os	0
GTY 32.75Gb/s Transceivers	120
GTM 58Gb/s PAM4 Transceivers	-
100G / 50G KP4 FEC	-
Extended ⁽²⁾	-1 -2 -2L -3
Industrial	-1 -2

FPGA Resource Usage



Resource	Utilisation	Maximum	%
LUT	79230	1182240	6.70
LUTRAM	5167	591840	0.87
FF	190018	2364480	8.04
BRAM	221	2160	10.23
DSP	6	6840	0.09
Ю	59	832	7.09
GT	29	52	55.77
BUFG	88	1800	4.89
MMCM	3	30	10.00
PLL	2	60	3.33

Resource utilisation of Backend Master commit 9b15d30a9e944badb7118e8e1d9754fbb6127068 [6]

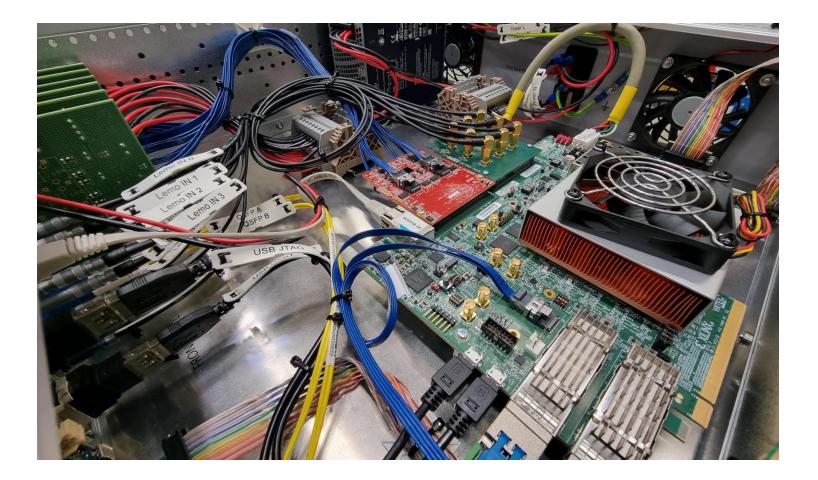
VCU118 Master IO

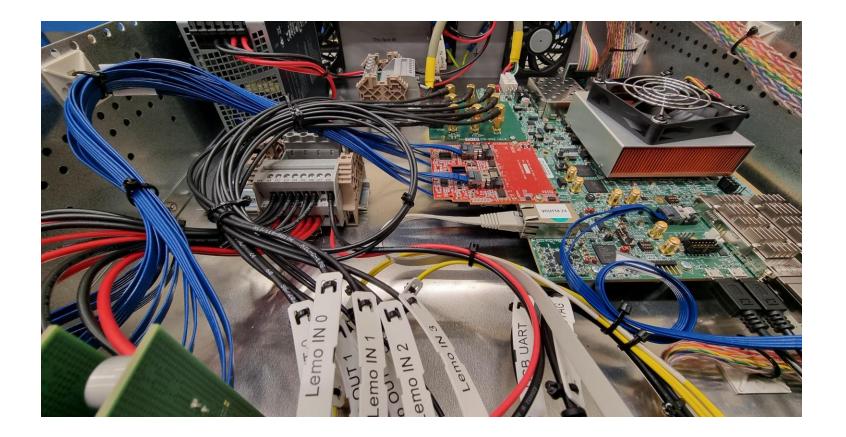
Product Development: 100 G Detector Readout Demonstrator.

100 G Data GeneratorSecond Joint BrightnESS WP4 and WP5 Jamboree 15th September 2017 Steven Alcock (DG)

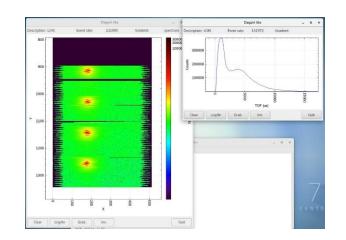
First Design

Final Design



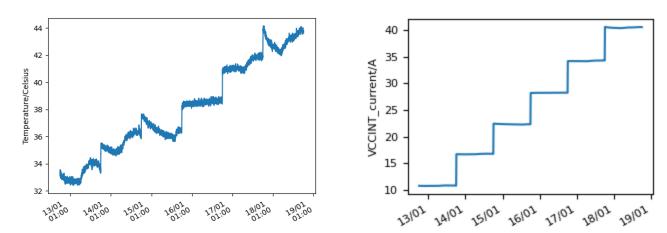

Inside the DRMM crate – Front right corner view

Inside the DRMM crate –Back view



Deployments: LOKI Beamtime (April 2021)

- Successful beamtime at ISIS was the first true endto-end test of the full DAQ chain (detector through to DMSC).
- Provides confidence that the ESS Readout System can be used for configuration, time distribution, and data readout of a real Instrument.

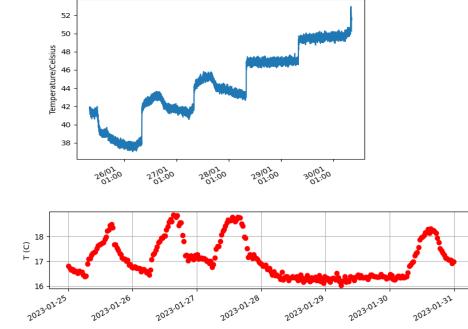


Steven Alcock, Detector Group, 24th January 2022 First CDR

Local Soak Tests (January 2022)

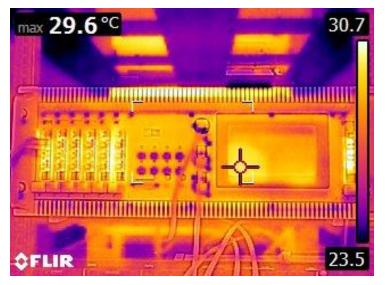
- Custom test firmware deployed to ensure the Master Module could sustain high electrical loads over long periods of time.
- Configured the FPGA to draw increasingly large currents (far in excess of what is voltage, current and temperature measurements from the relevant on-board power regulators at 5 second intervals.
- Results showed system can operate comfortably at expected loads: full report is available.

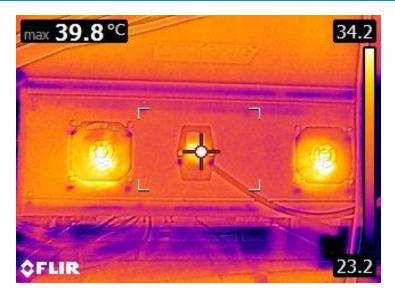
Local Soak Tests – Updated chassis (February 2023)



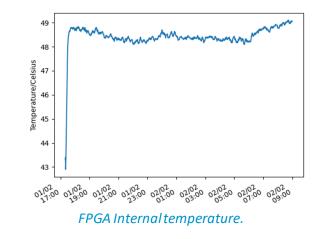
New tests were made with updated 3U/4U Verotech Caseframe chassis featuring airflow vents integrated into the top and bottom covers.

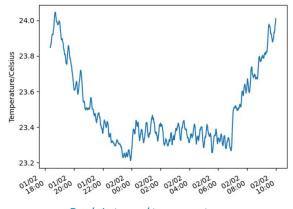
Local Soak Tests – Updated chassis (February 2023)


EUROPEAN SPALLATION SOURCE

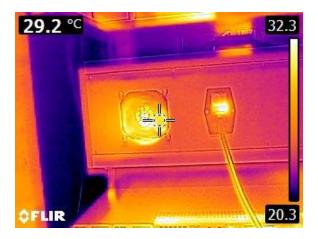

- A five-day soak test similar to the prototype Master Module testing was conducted, using a closed rack with no fans installed.
- Of the 8 fans slots in the top of the rack, one was open for cables, and the other 7 were closed off. To provide additional thermal load in the rack, there was also a server and an R5560 ADC crate installed in the rack.

Soak test - Thermal Camera photos

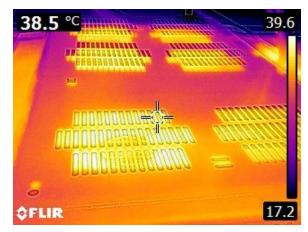


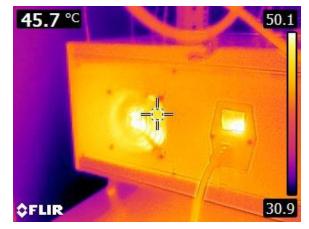


Thermal stress – Ventilated Rack


RMM under test in a ventilated rack (stress test in a normal usage environment).

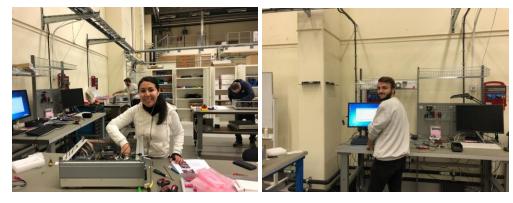
Thermal stress – Hot Rack



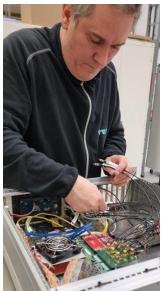

The ambient temperature was set to 40°C to simulate a rack fan ventilation failure.

CELIR

23.7



Readout Master Module Functionality Testing



• VCU118 test

- Check that the VCU118 is functional before RMM assembly
- RMM functional test
 - Check that assembly has been performed correctly

			project_1 -	/home/dgr	o/project_1	/project_1.	lpr] - Vivado	Lab Edition
Ele Edit Tools	Window Layout View	w Help Q- Quick Access						
B 6 4 B	n x o x ø	Dashboard -						
-, -								
Tcl Console Mess	ages Serial EO Links	x Serial I/O Scans						
Q X 0 +								
Name	TX	PX.	Status	Bits	Err ^1	BER	BERT Reset	TX Pattern
S FEBEAC 1 (4)							Reset	PRBS 7-bi
% Link 4	Ouad 126MGT X0V2	B/TX (xcvu9p 0) Quad 126/MGT X0/28/RX (x	CM 90 0) 6.340 Gbps	1.135E12	0E0	8.809E-13	Reset	PRBS 7-bi
S Link 5		9/TX (xcvu9p_0) Quad 126/MGT X0/29/RX (x		1.141E12	OED	8.764E-13	Reset	PRBS 7-bi
% Link 6		IO/TX (xcvu9p 0) Quad 126/MGT X0/30/RX (x		1.141E12	OEO	8.764E-13	Reset	PRBS 7-bi
S Link 7	Quad 126/MGT X0V3	11/TX (xcvu9p 0) Quad 126/MGT X0/31/RX (x	cwu9p 0) 6.340 Gbps	1.141E12	0E0	8.764E-13	Reset	PRBS 7-bi
S FEBEAC 2 (4)							Reset	PRBS 7-bi
% Link 8	Quad 122/MGT X0/1	2/TX (xcvu9p 0) Quad 122/MGT X0/12/RX (x	cvu9p 0) 6.339 Gbps	1.133E12	0E0	8.827E-13	Reset	PRBS 7-bi
S Link 9	Quad 122/MGT X0/1	3/TX (xcvu9p 0) Quad 122/MGT X0/13/RX (x	cvu9p_0) 6.340 Gbps	1.133E12	0E0	8.827E-13	Reset	PRBS 7-b
% Link 10	Quad 122/MGT X0/1	4/TX (xcvu9p 0) Quad 122/MGT X0Y14/RX (x	CVUSp 0) 6.340 Gbps	1.133612	050	8.827E-13	Reset	PRBS 7-bi
% Link 11	Quad 122/MGT X0/1	5/TX (xcvu9p 0) Quad 122/MGT X0/15/RX (x	cvu9p 0) 6.340 Gbps	1.133E12	0E0	8.827E-13	Reset	PRBS 7-bi
S FEBEAC 3 (4)							Reset	PRBS 7-bi
% Link 12	Quad 125/MGT X0V2	A/TX (xcvu9p 0) Quad 125/MGT X0Y24/RX (x	cvu9p 0) 6.335 Gbps	1.127E12	0E0	8.871E-13	Reset	PRBS 7-bi
% Link 13	Ouad 125/MGT X0V2	5/TX (xcvu9p 0) Quad 125/MGT X0/25/RX (x	CVU9p 0) 6.340 Gbps	1.127E12	0E0	8.871E-13	Reset	PRBS 7-bi
N Link 14	Quad_125/MGT_X0V2	16/TX (xcvu9p_0) Quad_125/MGT_X0Y26/RX (x	cvu9p_0) 6.346 Gbps	1.127612	080	8.871E-13	Reset	PRBS 7-b
% Link 15	Quad_125/MGT_X0V2	7/TX (xcvu9p_0) Quad_125/MGT_X0V27/RX (x	cvu9p_0) 6.340 Gbps	1.127E12	0E0	8.87E-13	Reset	PRBS 7-bi
S FEBEAC 5 (4)							Reset	PRBS 7-bi
% Link 20	Quad_120/MGT_X0V4	VTX (xcvu9p_0) Quad_120/MGT_X0Y4/RX (xc	(usp_0) 6.340 Gbps	1.12612	050	8.93E-13	Reset	PRBS 7-bi
% Link 21	Quad_120/MGT_X0/5	(TX (xcvu9p_0) Quad_120/MGT_X0Y5/RX (xc	(U9p_0) 6.340 Gbps	1.12E12	0E0	8.929E-13	Reset	PRBS 7-bi
% Link 22	Quad_120/MGT_X0V6	(TX (xcvu9p_0) Quad_120/MGT_X0Y6/RX (xc	(USp_0) 6.340 Gbps	1.12612	050	8.929E-13	Reset	PRBS 7-bi
N Link 23	Quad_120/MGT_X0Y7	TX (xcvu9p_0) Quad_120/MGT_X0Y7/RX (xc	(U9p_0) 6.340 Gbps	1.12E12	0E0	8.929E-13	Reset	PRBS 7-bi
S FEBEAC 6 (4)							Reset	PRBS 7-bi
% Link 24	Quad_233/MGT_X115	i6/TX (xcvu9p_0) Quad_233/MGT_X1V56/RX (x	cvu9p_0) 1.761 Gbps	3.092611	OEO	3.234E-12	Reset	PRBS 7-bi
N Link 25	Quad_233/MGT_X115	7/TX (xcvu9p_0) Quad_233/MGT_X1V57/RX (x	cvu9p_0) 1.761 Gbps	3.092E11	0E0	3.234E-12	Reset	PRBS 7-bi
N Link 26	Quad_233/MGT_X115	8/TX (xcvu9p_0) Quad_233/MGT_X1V58/RX (x	cvu9p_0) 1.761 Gbps	3.092E11	0E0	3.234E-12	Reset	PRBS 7-bi
% Link 27	Quad_233/MGT_X1V5	9/TX (xcvu9p_0) Quad_233/MGT_X1V59/RX (x	cvu9p_0) 1.761 Gbps	3.092E11	OEO	3.234E-12	Reset	PRBS 7-bi
\$\low \left(\mathbf{Q}\) \left(\mathbf{A}\)							Reset	PRBS 7-bi
N Link 28	Quad_232/MGT_X115	2/TX (xcvu9p_0) Quad_232/MGT_X1V52/RX (x	cvu9p_0) 28.126 Gbps	4.904E12	0E0	2.039E-13	Reset	PRBS 7-bi
N Link 29	Quad_232/MGT_X115	3/TX (xcvu9p_0) Quad_232/MGT_X1Y53/RX (x	CVU90 0) 28.126 Gbps	4.904E12	OED	2.039E-13	Reset	PRBS 7-bi

Readout Master Module Functionality Testing

• IBERT

- Integrated Bit Error Rate Test
- Xilinx IP core
- Test Multi-Gigabit Transceivers
- Used to test
 - Ring transceivers (24x6.34Gbps)
 - 100GbE transcievers (8x25.78Gbps)
 - Timing system (Embedded EVR) transceiver (1x1.76Gbps)
 - Also tests clock chip programming

			project_1 -	[/home/dgr	o/project_1	/project_1.	lpr] - Vivado L	ab Editio
Ele Edit Tools	Window Layout View	Help Q+ Quick Access						
	XOXØX							
Tcl Console Messa	ges Serial I/O Links ×	Serial I/O Scans						
Q X 0 +								
Name	TX	RX	Status	Bits	Err. ^1	BER	BERT Reset	TX Patte
✓ ⊗ FEBEAC 1 (4)							Reset	PRBS 7-
% Link 4	Quad 126/MGT X0V28/TX	(xcvu9p_0) Quad 126/MGT_X0Y28/RX (xcv	ugo 0) 6.340 Gbps	1.135E12	OEO	8.809E-13	Reset	PRBS 74
% Link 5		(xcvu9p_0) Quad 126/MGT X0Y29/RX (xcv		1.141E12	0E0	8.764E-13	Reset	PRBS 7-4
% Link 6		(xcvu9p_0) Quad 126/MGT_X0Y30/RX (xcv		1.141E12	OEO	8.764E-13	Reset	PRBS 7-
% Link 7		(xcvu9p_0) Quad 126/MGT X0Y31/RX (xcv		1.141E12	0E0	8.764E-13	Reset	PRBS 7-4
S FEBEAC 2 (4)							Reset	PRBS 7-
% Link 8	Quad 122/MGT X0Y12/TX	(xcvu9p 0) Quad 122/MGT X0Y12/RX (xcv	u9p 0) 6.339 Gbps	1.133E12	0E0	8.827E-13	Reset	PRBS 7-8
% Link 9	Quad 122/MGT_X0Y13/TX	(xcvu9p_0) Quad 122/MGT_X0Y13/RX (xcv	u9p_0) 6.340 Gbps	1.133E12	OEO	8.827E-13	Reset	PRBS 74
% Link 10	Quad 122/MGT X0Y14/TX	(xcvu9p 0) Quad 122/MGT X0Y14/RX (xcv	u9p 0) 6.340 Gbps	1.133E12	0E0	8.827E-13	Reset	PRBS 74
% Link 11	Quad_122/MGT_X0Y15/TX	(xcvu9p_0) Quad_122/MGT_X0Y15/RX (xcv	u9p_0) 6.340 Gbps	1.133E12	0E0	8.827E-13	Reset	PRBS 74
✓ S FEBEAC 3 (4)							Reset	PRBS 74
% Link 12	Quad_125/MGT_X0V24/TX	(xcvu9p_0) Quad_125/MGT_X0Y24/RX (xcv	u9p_0) 6.335 Gbps	1.127E12	0E0	8.871E-13	Reset	PRBS 74
% Link 13	Quad_125/MGT_X0Y25/TX	(xcvu9p_0) Quad_125/MGT_X0Y25/RX (xcv	u9p_0) 6.340 Gbps	1.127E12	0E0	8.871E-13	Reset	PRBS 74
% Link 14	Quad_125/MGT_X0V26/TX	(xcvu9p_0) Quad_125/MGT_X0Y26/RX (xcv	u9p_0) 6.346 Gbps	1.127E12	0E0	8.871E-13	Reset	PRBS 7-
% Link 15	Quad_125/MGT_X0Y27/TX	(xcvu9p_0) Quad_125/MGT_X0V27/RX (xcv	u9p_0) 6.340 Gbps	1.127E12	0E0	8.87E-13	Reset	PRBS 74
See FEBEAC 5 (4)							Reset	PRBS 74
% Link 20	Quad_120/MGT_X0Y4/TX 0	(cvu9p_0) Quad_120/MGT_X0Y4/RX (xcvu	(9p_0) 6.340 Gbps	1.12E12	0E0	8.93E-13	Reset	PRBS 7-8
% Link 21	Quad_120/MGT_X0Y5/TX 0	(cvu9p_0) Quad_120/MGT_X0Y5/RX (xcvu	9p_0) 6.340 Gbps	1.12E12	0E0	8.929E-13	Reset	PRBS 7-4
% Link 22	Quad_120/MGT_X0Y6/TX ()	(cvu9p_0) Quad_120/MGT_X0Y6/RX (xcvu	9p_0) 6.340 Gbps	1.12E12	0E0	8.929E-13	Reset	PRBS 7-
% Link 23	Quad_120/MGT_X0Y7/TX 0	(cvu9p_0) Quad_120/MGT_X0Y7/RX (xcvu	9p_0) 6.340 Gbps	1.12E12	0E0	8.929E-13	Reset	PRBS 74
S FEBEAC 6 (4)							Reset	PRBS 74
% Link 24	Quad_233/MGT_X1Y56/TX	(xcvu9p_0) Quad_233/MGT_X1Y56/RX (xcv	u9p_0) 1.761 Gbps	3.092E11	0E0	3.234E-12	Reset	PRBS 7-
% Link 25	Quad_233/MGT_X1Y57/TX	(xcvu9p_0) Quad_233/MGT_X1Y57/RX (xcv	u9p_0) 1.761 Gbps	3.092E11	0E0	3.234E-12	Reset	PRBS 7-
% Link 26	Quad_233/MGT_X1Y58/TX	(xcvu9p_0) Quad_233/MGT_X1Y58/RX (xcv	u9p_0) 1.761 Gbps	3.092E11	0E0	3.234E-12	Reset	PRBS 7-
% Link 27	Quad_233/MGT_X1Y59/TX	(xcvu9p_0) Quad_233/MGT_X1Y59/RX (xcv	u9p_0) 1.761 Gbps	3.092E11	0E0	3.234E-12	Reset	PRBS 7-
V % QSFP 0 (4)							Reset	PRBS 74
% Link 28		(xcvu9p_0) Quad_232/MGT_X1Y52/RX (xcv		4.904E12	0E0	2.039E-13	Reset	PRBS 7-8
% Link 29	Quad_232/MGT_X1Y53/TX	(xcvu9p_0) Quad_232/MGT_X1Y53/RX (xcv	u9p_0) 28.126 Gbps	4.904E12	0E0	2.039E-13	Reset	PRBS 7-4

Readout Master Module Functionality Testing

- Other interface tests
 - JTAG
 - UART
 - 1G Ethernet
 - Touchscreen
 - LEMO
 - HFBR

Square,OFF,51	Sine,OFF,500
Frequency	25.000,000,00MHz
Amplitude	3.300 Vpp
Offset	1.650 V
Phase	0.000°
Duty Cycle	50.00%
CH1 Output	
	Output Range Polarity Voltage Dual
Off De	Load Auto Normal Limits Channel

Device DNA:	VCCINT:
0×40020000	3.750 W
0x01178A25	VCC1V8:
0x3C710245	1.875 W
Git Hash:	VADJ:
Охааааааа	0.075 W
0×BBBBBBBB	VCC1V2:
0xCCCCCCC	0.375 W
Bitstream Generation Time:	MGTAVCC:
00-00-00 00:00 00	1.975 W
Up Time:	MGTAVTT:
00 00:00:26	14.10 W
Current FPGA Temperature:	VINTBRAM:
23.6 degrees C	0.200 W
Highest FPGA Temperature:	
32.0 degrees C	

EUROPEAN SPALLATION SOURCE

Questions

Xilinx Product Longevity

Product Longevity

A product lifecycle is typically defined by four main phases: introduction, growth, maturity, and decline. Xilinx designs products and creates the supporting supply chain with the clear intent to support a minimum **15+ year lifecycle***, starting from first production release. Xilinx parts are used extensively in numerous applications that require a long operational lifetime, and therefore, Xilinx makes a strong commitment to product longevity. With this commitment, although the minimum lifecycle is 15 years, customers will see that the majority of families will be supported much longer. The longevity of

Xilinx products is longer than ASSPs, ASICs, and other major FPGA suppliers. In the case of a last time buy, Xilinx does follow the JEDEC standard.

https://www.xilinx.com/support/quality/support.html#productLongevity